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Abstract
Physically based simulation is often combined with geometric mesh animation to add realistic soft-body dynamics to virtual
characters. This is commonly done using constraint-based simulation whereby a soft-tissue simulation is constrained to geo-
metric animation of a subpart (or otherwise proxy representation) of the character. We observe that standard constraint-based
simulation suffers from an important flaw that limits the expressiveness of soft-body dynamics. Namely, under correct physics,
the frequency and amplitude of soft-tissue dynamics arising from constraints (“inertial amplitude”) are coupled, and cannot
be adjusted independently merely by adjusting the material properties of the model. This means that the space of physically
based simulations is inherently limited and cannot capture all effects typically expected by computer animators. For example,
animators need the ability to adjust the frequency, inertial amplitude, gravity sag and damping properties of the virtual charac-
ter, independently from each other, as these are the primary visual characteristics of the soft-tissue dynamics. We demonstrate
that independence can be achieved by transforming the equations of motion into a non-inertial reference coordinate frame, then
scaling the resulting inertial forces, and then converting the equations of motion back to the inertial frame. Such scaling of
inertia makes it possible for the animator to set the character’s inertial amplitude independently from frequency. We also pro-
vide exact controls for the amount of character’s gravity sag, and the damping properties. In our examples, we use linear blend
skinning and pose-space deformation for geometric mesh animation, and the Finite Element Method for soft-body constrained
simulation; but our idea of scaling inertial forces is general and applicable to other animation and simulation methods. We
demonstrate our technique on several character examples.

CCS Concepts
• Computing methodologies → Physical simulation;

1. Introduction

Digital characters generally follow a three-stage process in com-
puter animation practice today. First, a modeler creates the geo-
metric shape of the character (typically a textured triangle mesh)
using 3D shape modeling tools. Next, a rigger equips the mesh
with an animation-ready structure that permits one to deform the
mesh using some low-dimensional mechanism such as a skeleton
or inverse kinematics (IK) handles; usually by means of skeleton
skinning weights, blendshapes, or some other geometric deformer.
Finally, the animator uses the rig to create the output mesh anima-
tion, by keyframing the skeleton joint angles or IK handles over
time. Such a “geometric animation” process produces static mesh
shapes in each character’s pose, devoid of dynamics or any time
history whatsoever.

Characters can be made much more realistic and appealing by
adding secondary soft-tissue dynamics. Such dynamics can model

† joint first author; bohanwan@usc.edu
‡ joint first author; mianlunz@usc.edu
§ jnb@usc.edu

soft tissue vibrations due to the character’s acceleration, or collision
response against external objects. Dynamics is too tedious to be
animated by hand. A common approach to add dynamics is to “at-
tach” a physically based simulation to the geometrically animated
mesh shape (or a subset thereof), using constraint-based dynamics.
Such a process is very common and widely used both in academic
publications and in industry [CBC∗05, HMT∗12, HTC∗13, XB16,
LXB17, KDGI19, Tis13], to name a few methods. The soft-tissue
is often modeled as a tetrahedral mesh, and simulated using mass-
spring systems, or, as in our case, using Finite Element Method
simulation. Animators generally like the output quality of such sys-
tems, as long as the system is reasonably fast and robust, and very
importantly, controllable. Namely, the animator needs to be able to
easily adjust salient deformable dynamics characteristics, such as
the deformation amplitude, frequency, sagging under gravity and
damping properties. Commonly, animators today adjust these quan-
tities by tweaking the material properties of the FEM mesh.

In constraint-based simulation, character deformable dynamics
occurs because of the motion of the constraints (“inertial dynam-
ics”) and because of contact; with inertial dynamics typically being
the most visible part as it often occurs everywhere on the character
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Figure 1: Independent control of frequency and inertial ampli-
tude. Top row: mesh animation of the geometric proxy, created
by a professional animator using linear blend skinning (LBS) and
pose-space deformation (PSD). Second row: baseline simulation.
Third row: material elastic properties have been adjusted to lin-
early scale the deformation frequency spectrum by 0.5x. Inertial
amplitude automatically grows and cannot be adjusted indepen-
dently of the frequency; if one changes material properties to make
the object stiffer so as to lessen the amplitude, then the frequency
changes also. Last row: our adjusted physics makes it possible to
scale down inertial deformable dynamics to a level similar in the
baseline simulation, while not changing the frequency spectrum.
This is achieved by adding inertial force scaling terms to the equa-
tions of motion. As such, the system can be timestepped in the usual
way, and we can apply standard contact resolution methods to ro-
bustly resolve self-contact. Parameters χ and ε denote the relative
change of frequency and scaling of inertial forces (unmodified mo-
tion: χ = ε = 1), respectively.

and across the entire motion timeline. In this paper, we demonstrate
that the process of tweaking material properties suffers from an
important previously unidentified practical limitation: by following
the laws of physics, it is impossible to simultaneously adjust the
inertial deformation amplitude and frequency merely by tweaking
the physical model. We give a method that avoids this limitation, by
observing that any dynamical system can be expressed in an arbi-
trary reference coordinate frame, including frames that accelerate

(“non-inertial frames”), as long as proper resulting inertial forces
are added to the physical system (also called fictitious forces, or
d’Alembert forces). Our key idea is to transform the model into a
properly selected non-inertial coordinate frame, compute the cor-
rect inertial forces, but then scale them; and finally transform back
to the world-coordinate inertial frame. Such a transformation gives
direct control over the inertial deformation amplitude of the charac-
ter’s soft tissue dynamics (Figures 1, 2). The resulting deformable
dynamics is non-physical, but contains arbitrary and adjustable (de-
flated, exaggerated, etc.) soft-tissue deformation amplitudes as of-
ten needed and used in character animation. We then derive equa-
tions for how to adjust not just the deformation amplitude of the
soft tissue of the character, but also its frequency, gravity sag and
damping decay rate, by adjusting both the material properties and
the inertial force scale. In summary, our work contributes the abil-
ity to adjust the most salient visual characteristics of the character’s
deformable dynamics without “guessing” the model physical prop-
erties, and with the flexibility to independently adjust frequency
and amplitude. Our method modifies the standard constraint-based
dynamics equations of motion in a minimal way, merely by adding
additional terms to the right-hand side. Our method can therefore
be used with any existing numerical integrator, contact resolution
scheme and easily supports both homogeneous and inhomogeneous
material properties without any special treatment: our examples
have artist-adjusted spatially varying material properties in their
ears, trunks, leaves and other similar parts.

2. Related work

Bringing physically realistic deformations to geometric animation
methods is a widely studied topic in computer animation. There are
many methods to add physics to skeleton rigs. In [CBC∗05], char-
acters were animated using force-driven rigs, with the forces de-
scribed using the rig building blocks. One can also construct a de-
formation basis from a skeleton embedded into a tetrahedral mesh,
and combine it with domain-decomposition to simulate articulated
deformable characters [KJ12]. Piovarči et al. created a physically-
inspired stretching model to evaluate the stretching caused by the
gravitational force or muscle contractions [PMĎ15]. Liu et al. cou-
pled skeleton and soft-tissue dynamics and employed a novel pose-
based plasticity model for human-like skeleton-driven soft body
characters [LYWG13]. Galoppo et al. handled large-area contacts
on a skeleton-driven surface mesh, producing rich soft-tissue de-
formations [GOT∗07]. Shi et al. learned secondary deformations
from a few example animation sequences of the surface mesh,
and applied it to skeleton-driven animations [SZT∗08]. Gilles et
al. combined frame-based skinning models with physically based
deformable object simulation [GBFP11], and Martin et al. bi-
ased physically based simulation to example shapes [MTGG11].
The fast physically-based simulation system in [KP11] simulates
two-way interaction between the skeleton, the deformable body,
and the environment. McAdams et al. presented an algorithm
for soft-tissue FEM deformation for skeleton-driven characters,
based on a novel discretization of co-rotational elasticity over a
hexahedral lattice [MZS∗11]. Malgat et al. gave a layering ap-
proach to add simulation detail where needed by artists [MGL∗15].
In [HMT∗12,HTC∗13], Hahn et al. formulated the soft-body FEM
equations of motions in the rig-space. The method in [XB16]
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enriched the rigged character animations with secondary model-
reduced soft-tissue Finite Element Method (FEM) dynamics, and
optionally incorporated pose-space deformation (PSD) [LCF00].
Li et al. presented a system to combine arbitrary triangle mesh
animations with physically based Finite Element Method (FEM)
simulation, enabling control both in space and time [LXB17]. Re-
searchers also added physics to facial animation, by forming facial
blendshapes as a basis of forces [BSC16], using the original ani-
mation as per-frame rest poses [KBB∗17], or augmenting real-time
performance capture with physics [BS19]. Researchers at Pixar,
focusing on providing state-of-the-art nonlinear elasticity models
(we use their neo-Hookean material [SGK18] in our work), also
demonstrated how to effectively use constraints to add secondary
soft-tissue dynamics [SGK18, SGK19, KDGI19].

Previous work has therefore successfully investigated how to en-
rich geometric/kinematic animation with more compelling physi-
cal effects. However, physics is generally difficult to tune for non-
experts, as the typical physical parameters such as, for example,
Young’s modulus or acceleration of gravity, do not necessarily eas-
ily translate into good intuition for visual output. In the view of
an animation artist, it is very important to not just add physics to
geometric/kinematic animation, but also directly control its key vi-
sual characteristics. We provide such a method, focusing on key
visual characteristics such as inertial amplitude, frequency, grav-
ity sag and damping. Previous work did not address this problem
directly; and for a good reason, as it is (under correct physics)
impossible to independently adjust the two key visual character-
istics, frequency and inertial amplitude. Actually, to the best of our
knowledge, this hindering coupling of frequency and amplitude has
not been previously identified. The work of [WZB17] investigated
a related problem for model-reduced systems combined with do-
main decomposition for botanical simulation, but did not address
virtual characters, unreduced physical systems or systems that are
not decomposed into domains. Xu et al. [XSZB15] controlled de-
formation amplitudes via nonlinear stress-strain material curves.
However, doing so changes the actual nonlinear material, and as
such modifies the static shapes also. Our method makes it possible
to keep the static shapes as is, and only adjust the secondary dy-
namics. This facilitates animation design, as animations are often
created in layers, and dynamics can be considered as an additional
“layer” on top of static shapes. Furthermore, unlike our work, Xu et
al. could not simultaneously control sag, and remained in the realm
of what is possible under the laws of physics. In [LXB17], the au-
thors combined physics with geometric animation using geometric
rotation-aware interpolation. Their method cannot simulate correct
physically based self-contact and character’s interaction with other
objects; we give a comparison in Figure 7.

Our work adjusts frequency using vibration theory [Sha90,
DBC∗15]. Previous work controlled natural frequencies of vibra-
tion using mesh coarsening [CLMK17, CLK∗19]. This was done
by adjusting frequencies of a coarse mesh to match those of a
fine mesh; they did not discuss how to adjust inertial amplitude,
sag or damping. A technique to adjust damping has been provided
in [XB17]; however, the work did not discuss how to simultane-
ously adjust frequency, inertial amplitude and sag.

3. Coupling physics to geometric animation

We assume a standard dynamics-enabled computer animation
pipeline whereby the animation system consists of two compo-
nents: geometric animation, and physically based simulation. In
geometric animation, one animates a point cloud using geometric
techniques, such as using an embedded skeleton and linear blend
skinning, using “sliders” and blendshapes, using pose-space defor-
mation, or other nonlinear deformers, or any technique from ge-
ometric shape modeling (ARAP [SA07], BBW [JBPS11], varia-
tional methods [BK04], etc.). The point cloud may have connectiv-
ity (a triangle mesh), although this is not necessary in our method.
Physically based simulation consists of a simulation mesh with ma-
terial properties such as mass density, Young’s modulus, Poisson’s
ratio, volume preservation; the specific list of parameters depends
on the elastic material model. Most commonly, the simulation mesh
is a tetrahedral mesh, although it could also be a triangle mesh for
thin-shell simulation (cloth). Finally, the character’s output triangle
mesh is embedded into the simulation mesh, and driven using any
suitable method such as barycentric weights, mean-value coordi-
nates or other higher-order shape interpolation method.

The purpose of geometric animation is to provide the artist with
easy and intuitive animation control. The animator can animate the
character by specifying intuitive controls to geometric animation
such as skeleton joint-angles, blendshape sliders, or 3d handle po-
sitions. The joint angles do not even need to be manually keyframe-
animated, but can come from another process, such as motion cap-
ture or motion control. The purpose of physically based simulation
is to provide soft-tissue dynamics and character collision response,
as well as correct any “non-physical” behavior of geometric tech-
niques, such as volume preservation violations, unwanted collisions
or overly “robotic” motion. Physically based animation is coupled
to geometric animation using constraints. Most practical systems
employ one-way coupling, whereby physically based simulation is
coupled to the output of the geometric shape, but the geometric
stage is not affected by the physics; we adopt this approach in our
work as well. We note that two-way coupling would entail the soft-
tissue dynamics “pulling” on and modifying the geometric motion,
e.g., modifying the character’s angles as a result of elastic inertia
or collisions. Although this is in principle better than one-way cou-
pling, most systems in practice do not adopt this approach because
it is (1) slower, and (2) makes it harder for the artists to control the
animation.

In our method, the point cloud of the geometric stage may, or
may not be, a subset of the output character’s triangle mesh. The
point cloud may be as simple as a few points undergoing transla-
tions, or general rigid body motion; or as complex as a fully rigged
triangle mesh undergoing highly nonlinear shape deformation. In
all cases, the point cloud serves to define the constraints for phys-
ically based simulation (Figure 3). In the sunflower example, for
example, we want to animate the sunflower dynamic deformations
resulting from holding it by the root and “yanking” it to the right.
In the jellyfish example, we apply rigid body motion to a rigid jel-
lyfish “core” point cloud (the “geometric proxy”), and then observe
the highly dynamic detail of the soft head and tentacles.

We employ the Finite Element Method (FEM) for the character’s
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Figure 2: Adjusting inertial amplitude: The geometric proxy here
consists of four vertices at the very bottom of the sunflower; it is
geometrically animated to abruptly start moving right with con-
stant velocity, then abruptly stop at frame 150. The abrupt start and
stop cause inertial dynamics (seen at frame 155) whereby the sun-
flower is “yanked” to the left and right, respectively, relative to its
rigid configuration. Solid mesh shows the baseline motion (ε = 1)
and wireframe shows motion with adjusted inertial amplitude (left:
ε = 0.5, right: ε = 2). Observe that ε = 0.5 and ε = 2.0 generate
less and more inertial dynamics compared to ε = 1, as expected.
Linear sunflower. We show a nonlinear sunflower in the video.

physically based soft-tissue dynamics. The equations of motion are

Mü+Du̇+ fint(u) = Mg, (1)

subject to Cu = Sx(t), (2)

where M ∈ R3n×3n is the tet mesh mass matrix, n to be the num-
ber of tet mesh vertices, fint(u) are the internal elastic forces,
D = dmM + dsK is the Rayleigh’s damping matrix, g ∈ R3n is
the gravity acceleration and u ∈ R3n, u̇ ∈ R3n and ü ∈ R3n rep-
resent the displacements (away from the tet mesh rest shape), ve-
locity and acceleration of the tet mesh vertices, respectively. The
time-varying positions x(t) define the motion of the geometrically
animated point cloud, S is a selection matrix that selects or com-
bines the relevant degrees of freedom, and C ∈ Rm×3n is the con-
straint matrix that constraints the tet mesh degrees of freedom to
the point cloud. The internal elastic forces depend on the chosen
elastic material properties, which may be selected in any suitable
way, i.e., isotropic materials, anisotropic materials, homogeneous,
non-homogeneous, linear, nonlinear, co-rotational, etc. Although
we use the Finite Element Method and volumetric solid simulation,
we note that other elastic models could be substituted instead with-
out changing the structure of Equations 1 and 2, e.g., mass-spring
systems, cloth simulation, elastic rod simulation, etc.

Obviously, different material properties produce different ani-
mation outputs. For example, larger Young’s modulus stiffens the
deformation. Therefore, it is necessary to provide the artist with
a flexible, accurate and easy method to adjust the animations. A
straightforward requirement is that this should be doable, as much
as possible, without changing the geometric motion. Otherwise, the

Figure 3: Constrained simulation overview. The blue lines denote
the geometrically animated proxy. While this is often a mesh (po-
tentially with non-manifold topology), only its vertices (the “point
cloud”) are needed in our work; if more precise constraints are
needed, the point cloud can be refined. The output character trian-
gle mesh is denoted in green (also potentially with non-manifold
topology); it is embedded into the tetrahedral mesh. The tetrahe-
dral mesh can be constrained, for example, to the current positions
of the red vertices, forming the constraint matrix C and right-hand-
side vector x(t). For example, one may constrain material tet mesh
positions to the point cloud, using barycentric constraints.

method loses flexibility and becomes much more burdensome and
conceptually harder to understand, as even minor changes require
re-executing even the geometric animation pipeline. In the next sec-
tions, we identify important desired visual properties for the anima-
tors to control, and then give a method to meet them in practice.

4. Animation control desiderata

We now identify four important visual properties of animations. In
later sections, we will describe how to precisely set these proper-
ties, providing animators with useful high-level control over soft-
body simulations.

Vibration frequency: Obviously, this is a primary visual charac-
teristic of deformable dynamics and it is very useful for the ani-
mators to adjust it. Three-dimensional elastic objects are complex,
and there is no such thing as a single vibration frequency. However,
a reasonable representative choice is the lowest natural frequency
of vibration of the object, under the boundary conditions imposed
by the attachments to the geometric proxy point cloud. It can be
computed by solving the generalized constrained eigenvalue prob-
lem [LSY97, XB16],

Ku = λMu, (3)

subject to Cu = Sx. (4)

where K is the stiffness matrix of the tetrahedral FEM mesh (in
the rest shape), and the eigenvectors are u and the corresponding
eigenvalues are λ. We solve the eigenproblem once, before start-
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Figure 4: Sag control: We used our technique (Section 5) to in-
crease sag 3x (shown in wireframe) relative to original simula-
tion (solid), while keeping frequency and deformation amplitude
(as measured from sagged configuration) unmodified.

ing the physically based modeling session, based on the charac-
ter’s rest shape and constraints to the point cloud positions x in the
rest shape; and keep the smallest eigenvalue λ. The relationship be-
tween eigenvalue and frequency is λ = ω

2 = (2π)2
ν

2. Therefore,
the character’s natural frequency is ν =

√
λ/(2π), and the natural

vibration period is T = 1/ν. For simplicity and typically without
much loss in practice, the above analysis ignores the changes in the
lowest eigenvalue due to the changed boundary conditions during
the animation. It also ignores higher vibration frequencies. How-
ever, we prefer to describe the vibration frequency with just a single
number as this is easy to understand and adjust. When we adjust the
vibration frequency ν in Section 5, we will do so in a way whereby
the entire frequency spectrum linearly re-scales, i.e., the ratios be-
tween the frequencies remain constant. Such one-dimensional fre-
quency control is easy to understand as it corresponds to making
the dynamics “slower” or “faster”.

Gravity sag: Sag represents how much the character’s soft tissue
“sinks downward” under its own weight. It is an important anima-
tion characteristic commonly discussed and adjusted in computer
animation literature [TKA11]. The sag ζ under gravity can be com-
puted by solving the static equilibrium equation fint(u) = Mg, and
defining ζ = ||u||.

Inertial amplitude: Deformable dynamics originates from the
motion of the geometric proxy point cloud. Recall the sunflower
example in Figure 2 whereby the movement of the constrained ver-
tices causes the sunflower to bend. Similarly, the geometric motion
of the character proxy geometry causes bellies, thighs and cheeks
to vibrate. If the proxy geometry moves with constant velocity (no
rotations or accelerations), the soft tissue experiences no inertial
forces and the amplitude is zero. In the presence of accelerations,
however, such as during translational acceleration, rotations or non-

rigid motion of the point cloud, there are inertial forces acting on
the soft tissue, causing deformable dynamics. The goal of our pa-
per is to provide the animator with intuitive control over the result-
ing deformation amplitude. As explained previously, with correct
physics, the amplitude is coupled with frequency; in Section 5, we
will give our approach to decouple them.

So, how can one define such a concept of amplitude? Our idea
is to define amplitude as deviation away from the equilibrium con-
figuration of the object, given the current constraints as imposed
by the geometric point cloud proxy. Let pi be the equilibrium dis-
placement of tet mesh vertex i under the geometric point cloud con-
straints at the current timestep, i.e., the displacement of vertex i in
a simulation that is completely devoid of any dynamics, such as
those obtained using a static solve. Further, let Ri be the rotation
matrix giving the local orientation of the material around vertex i
relative to the rest shape orientation. We compute Ri as the volume-
weighted average of the deformation gradients of tets around vertex
i, followed by polar decomposition [MG04]. We can then express
the total displacement from the elastic equilibrium as ui = pi+Riqi,
where qi is the “dynamic displacement” of the vertex i, expressed
in its current local coordinate system. We define amplitude as the
root-mean-square of dynamic displacements,

A =

√
1
m

∫ tmax

0
< Mq,q > dt, (5)

where we have assembled all vertex dynamic displacements into a
vector q, and where the inner-product is weighted with the mass
matrix M to account for any non-uniform tet meshing, and the
scalar m is the total object mass. In practice, we discretize the inte-
gral via the simulation timesteps.

Damping: We use the familiar Rayleigh damping in the form of
D = dmM+dkK, where dm and dk are the mass and stiffness damp-
ing coefficients. The modal damping factor [JP02] of the lowest
natural frequency of vibration is

ξ =
1
2
(dm

ω
+dkω

)
, (6)

where ω = 2πν is the undamped lowest natural frequency of vibra-
tion. Much like with frequency, we are interested here in the lowest
natural frequency, as opposed to the entire spectrum. We made this
choice because this is often the dominant visual effect in anima-
tions, and the resulting one-dimensional analysis makes it tractable
to tune the damping in a straightforward manner. The deformation
amplitude decays with the envelope exp(−ξω t) [JP02]. The salient
visual characteristic of this decay is how long it takes for the am-
plitude to decay to a certain percentage of the original value, such
as 50%:

e−ξω tD =
1
2
⇒ tD =

log2
ξω

=
2log2

dm +4π2dkν2 . (7)

This relationship will permit us to tune dm and dk so that a given
artist-chosen tD is met (Section 5).

5. Meeting the desiderata

The first and “obvious” approach to meet the desiderata of Sec-
tion 4 is to scale the various parameters of the physical model. One
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can scale mass, stiffness (Young’s modulus) and gravity accelera-
tion using scalars δ, γ, and µ,

M← δM, K← γK, g← µg. (8)

In order to tune the damping factor, we scale the two damping co-
efficients with scalars cm and ck,

dm← cmdm, dk← ckdk. (9)

These scalings produce equations of motion

δMü+(cmdmδM+ ckdkγK)u̇+ γfint(u) = µδMg, (10)

subject to Cu = Sx(t). (11)

We note that if one scales the time using a substitution t = κτ,
for some constant κ > 0, one obtains a system of equations that
have the same form as Equations 10 and 11, i.e, one does not in-
troduce a fundamentally new equation with new capabilities. Al-
though it at first seems that the scalings of Equations 10 and 11
should be sufficient to meet the desiderata, we discovered that the
frequency and inertial amplitude are inherently coupled. For sim-
plicity, we will now demonstrate this fact on a one-dimensional
example. Suppose a 1D mass particle with mass m and position
x = x(t) ∈ R is attached via a spring of stiffness k to a geometri-
cally animated target x0 = x0(t), i.e., the equations of motion are
mẍ+c(ẋ− ẋ0)+k(x−x0) = 0. We are interested in the current dis-
placement z(t) = x(t)− x0(t) from the static position x0(t). Sup-
pose we start from rest x(0) = ẋ(0) = x0(0) = ẋ0(0) = 0, and sup-
pose the animator animates x0 so that it accelerates with a short ac-
celeration pulse at t = 0 to velocity v0. It can then be shown [JP02]
that we have, for all t ≥ 0,

z(t) =
v0
ωd

exp
(
− c

2m
t
)

sin(ωdt), (12)

where ωd =
√

4mk− c2/2m, and therefore, the amplitude at time
t is v0

ωd
exp
(
− c

2m t
)
. This equation shows that as one tunes m,k,c

to increase or decrease the oscillation frequency ωd , the inertial
amplitude decreases or increases, respectively, due to the pres-
ence of the 1/ωd term. One cannot simultaneously control fre-
quency and amplitude merely by tweaking m,c and k. Due to
linear superposition, a similar effect occurs with continuous non-
instantaneous time-varying acceleration ẍ0, and also with general
three-dimensional constrained dynamics governed by Equations 1
and 2. We now present our approach that enables the decoupling of
frequency and inertial amplitude.

5.1. Scaling the inertial amplitude

In constraint-based simulation, soft-tissue dynamics originates
from the constraints imposed by the motion of the geometric proxy;
specifically, from the accelerations of its vertices. Intuitively, the
greater the acceleration of the constraints, the greater the dynamic
deformation amplitude. A first idea is to simply geometrically scale
the geometric proxy and its motion, so as to lessen or boost the ac-
celerations. In addition to complicating the formulation by main-
taining artificially scaled objects, this also causes difficulties with
interactions with the external world and other characters, as one
cannot easily define and resolve collisions between two characters
or the external world scaled by different factors.

Figure 5: The non-inertial coordinate frame. Rotation Ri is ob-
tained by applying polar decomposition to the weighted deforma-
tion gradients (denoted by F) in the vertex 1-ring neighborhood.

Figure 6: Scaling inertial forces: The geometric proxy in this case
is a point cloud in the “core” of this jellyfish. It was animated
to spin with constant rotational velocity along the vertical axis.
Left: correct physics. Right: we scale inertial forces 2x (“adjusted
physics”); this causes the tentacles and base to deform more. The
inertial forces in this example consist primarily of the centrifugal
and Coriolis forces.

Instead, our idea is to convert each vertex of the tet mesh into
its own non-inertial reference frame (Figure 5). This causes an in-
ertial force to each vertex, and our idea is to scale this force, ei-
ther uniformly or by different amounts for different vertices for
spatially varying amplitude control (as done in some of our jel-
lyphant, sunflower and jellyfish examples). Finally, we then con-
vert the equations of motion back to the inertial world-coordinate
reference frame. As already previously explained in Section 4,
we can express u = p+Rq, where p = p(t) ∈ R3n contains the
static deformations pi of all vertices at the current timestep, and
R = R(t) ∈ R3n×3n contains the 3x3 rotation matrices Ri down its
diagonal. Equations 1 and 2 then become

MRq̈+DRq̇+ fint(p+Rq) =

Mg−M(p̈+ R̈q+2Ṙq̇)−D(ṗ+ Ṙq), (13)

subject to CRq = Sx(t)−Cp. (14)

Let ε ≥ 0 be a scaling factor for the inertial forces M(p̈+ R̈q+
2Ṙq̇) in Equation 13, yielding

MRq̈+DRq̇+ fint(p+Rq) =

Mg− εM(p̈+ R̈q+2Ṙq̇)−D(ṗ+ Ṙq), (15)

subject to CRq = Sx(t)−Cp. (16)

Finally, we substitute q = RT (u− p), and obtain our “adjusted”
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physics equations, expressed in the inertial world-coordinate frame,

Mü+Du̇+ fint(u) = Mg+

(1− ε)M
(

p̈+(R̈RT +2ṘṘT )(u−p)+2ṘRT (u̇− ṗ)
)
, (17)

subject to Cu = Sx(t). (18)

Observe that the terms Mp̈, MR̈RT (u − p), 2MṘṘT (u −
p), 2MṘRT (u̇ − ṗ) are the linear acceleration inertial force,
angular acceleration inertial force, centrifugal force and Coriolis
force, respectively. When ε = 0, the inertial motion caused by the
constraints is canceled out, producing no deformable dynamics.
When ε = 1, motion is unmodified, i.e., the inertial forces are not
scaled and act as usual. We get stronger and weaker inertial forces
(and therefore larger and smaller inertial amplitudes) by setting
ε > 1 (Figure 6) and ε < 1, respectively. We compute the static
displacements P using a static solver, at each simulation timestep,
by solving

fint(p) = Mg, (19)

subject to Cp = Sx(t). (20)

In order to compute ṗ and p̈, we use 5-point finite differences,

p̈i =
−pi+2 +16pi+1−30pi +16pi−1−pi−2

12h2 . (21)

In order to compute R, Ṙ and R̈, we first compute deformation
gradients of all tets. We then compute the deformation gradient at
each vertex as a volume-weighted average of adjacent tets. The first
and second time derivatives of these vertex deformation gradients
can be easily computed analytically because the deformation gra-
dient is linear in vertex displacements. We then compute the polar
decomposition (yielding R), as well as the first and second time
derivatives of polar decomposition [BZ11], yielding Ṙ and R̈. We
can now apply both the scalings of Equations 8 and 9 and the iner-
tial force scalings, obtaining the final modified equations of motion,

δMü+(cmdmδM+ ckdkγK)u̇+ γfint(u) = µδMg+

(1− ε)δM
(

p̈+(R̈RT +2ṘṘT )(u−p)+2ṘRT (u̇− ṗ)
)
, (22)

subject to Cu = Sx(t). (23)

Observe that these equations are minimally perturbed from stan-
dard equations of motion 1 and 2; the only change is the presence of
the ε term that scales inertial forces. As such, Equations 22 and 23
can be timestepped using the usual numerical integrators. We note
that the inclusion of rotations R in the calculation of inertial forces
is important. The rotations provide centrifugal, Coriolis and angular
acceleration forces. In our jellyphant, sumo and jellyfish examples,
these forces were often of similar magnitude as the translational
acceleration inertia forces, and cannot be neglected without visual
artifacts.

5.2. Meeting the animation control desiderata

We now describe how we meet the desiderata of Section 4. Be-
fore the adjustment, the system has a frequency ν, sag ζ, inertial
amplitude A, and damping half-time td . Denote the desired after-
scaling version of quantity x by x. Absolute values of these quanti-
ties are typically not intuitive to the animators as they involve too

much technical jargon, i.e., “make lowest frequency 3Hz”. Instead,
it is more intuitive for animators to provide input in relative terms,
i.e., “make object vibrate 2x faster”. Therefore, the animator pre-
scribes ratios ν/ν, ζ/ζ, A/A, tD/tD. In order to derive the modified
properties that meet the desiderata exactly, we use linear physics
approximations. Although they are not exact under large deforma-
tions, they still provide meaningful guidance that can be used in an
iterative design process.

Vibration frequency: The after-scaling eigenvalue problem is

Ku = λMu, (24)

subject to Cu = Sx. (25)

where M = δM and K = γK. The new lowest eigenvalue is λ =
γ

δ
λ.

Consequently, the new lowest frequency is

ν =

√
λ

2π
=

√
γ

δ

√
λ

2π
=

√
γ

δ
ν = χν, where χ =

√
γ

δ
. (26)

It follows that we need to set χ = ν/ν. Note that once χ has been
set, we can set γ and δ in any way to satisfy χ

2 = γ/δ. Factors γ

and δ are never exposed individually in our work; and actually, this
redundancy is a consequence of the fact that one can multiply both
sides of the equations of motion with an arbitrary constant.

Sag amplitude after scaling can be computed as follows, which
gives us a formula to set µ, given the value of χ determined above.

ζ = ||K−1Mg||= µδ

γ
ζ =

µ
χ2 ζ ⇒ µ = χ

2 ζ

ζ
. (27)

Damping: The after-scaling Rayleigh damping is D = cmdmδM+
ckdkγK. In our system, the user controls the damping by prescrib-
ing a single parameter, namely the half-decay time tD; hence, there
is only one equation for two unknowns cm and ck. Stiffness damp-
ing is generally superior to mass damping and often preferred in
simulation: it does not damp rigid body motion, and removes spu-
rious high spatial frequencies. For this reason, we use only stiffness
damping (i.e., we set cm = dm = 0). We then obtain

tD =
log2

2π2ckdkν
2 =

1
ckχ2 tD ⇒ ck =

1
χ2

tD
tD

. (28)

Inertial amplitude is non-trivial to adjust because it depends not
just on χ and ε, but also on the specific time profile of the con-
straints. To illustrate this, consider two extremes: (1) the geometric
proxy undergoes constant and permanent acceleration, and (2) con-
straints just deliver a short acceleration impulse. In scenario (1),
inertial amplitude can be solved using a static equilibrium, sim-
ilarly to sag amplitude, Aconstant = ||K−1Mp̈||; this leads to the
formula ε = χ

2A/A. In scenario (2), the short acceleration impulse
produces an initial velocity v0 = hp̈, and hence we have v0 = εv0.
The kinetic energy will transfer to the potential energy,

1
2

v0
T Mv0 =

1
2

umax
T Kumax. (29)

The inertial amplitude is Aimpulse = ||umax||. We have

1
2

umax
T Kumax =

1
2

ε
2

χ2 umax
T Kumax , (30)
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and therefore ε = χA/A. Under general constraints, the system will
deviate from the idealized conditions (1), and (2). We address this
using a two-stage process. In the first stage, we set ε based on
whichever case (1) and (2) is most similar to the specific con-
straint motion in the animation; then re-run the simulation under
the χ,µ,ck,ε as determined in this section. This will result in fre-
quency, sag, and damping that (under linear physics) match those
requested by the animator, but the amplitude will only be matched
approximately. We can then compute the actual amplitude Aactual
using Equation 5. Finally, we observe that if one only changes ε to
ε
′ (as opposed to also χ,µ,ck), the output amplitude scales approxi-

mately linearly in ε
′/ε. We therefore set ε

′ = εA/Aactual and re-run
the simulation. Due to the presence of nonlinearities in fint and due
to contact, the output amplitude will still not match A. However,
the output amplitude is generally (modulo contact) a monotonic
function of ε, and we can continue tweaking ε, for example, using
bisection. Although this requires re-simulation, we emphasize that
in the absence of our “adjusted physics” technique, no amplitude
control is possible at all, due to coupling between amplitude and
frequency.

6. Results

We demonstrate our method on four examples (Table 1). The con-
straints on the sunflower and jellyfish undergo rigid body motion;
this geometric proxy motion was scripted by us. Our method can be
used for cartoon animation effects [CPIS02,GDO07]; namely, con-
trolling squash and stretch of soft deformable objects, as seen in our
sumo and “jellyphant” examples. These two examples are driven by
non-rigid constraints; the non-rigid motions of the proxy were an-
imated by a professional animator using linear blend skinning and
pose-space deformation [LCF00]. We timestepped our deformable
models with implicit backward Euler [BW98] and implicit Bathe’s
trapezoid-BDF2 method [XB17]. We use implicit Bathe’s method
in our sunflower, jellyfish and sumo examples, and implicit back-
ward Euler in the jellyphant. In Figure 7, we compare our method
to a recent method that permits the animator to combine geomet-
ric motion with physics [LXB17]. It can be seen that our method
produces superior contact handling.

Performance of our modified equations is analyzed in Table 1.
The jellyphant example needs a large number of substeps because
of very challenging self-contact; this has nothing to do with our
method; it occurs with and without our approach. When the point
cloud undergoes rigid body motion and there is no gravity (jellyfish
example), static solving is not needed because one can just translate
and rotate the neutral tet mesh. In the sumo and jellyphant exam-
ples, the static solving time can be seen to be approximately 1/4
of the dynamic simulation time, due to good temporal coherence
among the substeps. Therefore, when a standard method spends
a unit of computation time, our simulation with adjusted physics
spends 1.25 units because it needs to do the static solves, i.e., 25%
overhead. This overhead is relatively small, but certainly not neg-
ligible. That said, our method offers the ability to adjust the dy-
namics amplitude that cannot be easily achieved with other meth-
ods. The calculation of rotations, their time derivatives and inertial
forces is very fast; it takes 1000x less time than the total timestep
computation in the sumo and jellyphant examples (Table 1, column

Figure 7: Comparison to [LXB17]: Left: Our method only mod-
ifies the inertial terms, but otherwise follows standard equations
of motion. As such, one can add character self-contact handling
in any usual way (we use implicit penalty-based contact). This
results in correct contact handling, and good fold formation at
the contact site. Right: The geometric rotation-aware blending be-
tween the static shape and dynamic output produces collision arti-
facts. In this case, a wide spurious gap appears at the place where
there should be tight contact. This gap cannot be removed even
with the “blending-aware” contact handling technique presented
in [LXB17] because that technique only works when geometric in-
terpolation causes a collision; it cannot resolve the opposite case,
namely spurious gap formation.

“adjusted”). Evaluating the adjusted physics terms has a negligible
memory overhead as the static solves can be performed on the fly
together with the dynamic solves, and can re-use the same internal
force and tangent stiffness matrix calculation datastructures.

In Figure 8, we demonstrate that, under linear physics, we can
keep two of the frequency, damping and inertial amplitude fixed
while modifying the third one. Figure 10 demonstrates that we can
adjust the sag while keeping frequency unchanged. In Figure 11,
we demonstrate that we can adjust inertial amplitude independently
of frequency, using our scaling of inertial forces. Figure 9 gives an
analysis on a nonlinear example and demonstrates a typical anima-
tor “user story” of simultaneously adjusting both the frequency and
inertial amplitude.
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7. Conclusion

We contributed the observation that the frequency and amplitude
of soft tissue dynamics in a constrained system are inherently cou-
pled and cannot be adjusted independently using correct physics.
We gave a method to decouple them, by transforming the equations
of motion to non-inertial coordinate frames, and then scaling the
inertial forces. Furthermore, for linear physics, we derived precise
formulas for how to adjust the physical parameters such as mass,
stiffness (Young’s modulus), gravity acceleration, Rayleigh stiff-
ness damping and inertial force scaling factor, to meet prescribed
output visual characteristic such as natural vibration frequency, in-
ertial amplitude, gravity sag and damping. In the absence of our
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Model Core type Gravity Material model frames substeps static [min] dynamic [min] adjusted [min]
Sunflower Rigid X Linear FEM 300 1 0.17 1.3 0.0053
Sunflower Rigid X StVK 300 1 0.2 4.0 0.0052
Jellyfish Rigid X StVK 313 5 0 6.5 0.011
Sumo Deformable X StVK 400 4 6.3 25.3 0.026

Jellyphant Deformable X stable neo-Hookean 120 50 107 401 0.36

Table 1: Performance. Columns “frames” and “substeps” give the total number of graphics frames (at 24 FPS) and the number of simulation
steps per graphical frame, respectively. Columns “static”, “dynamic” and “adjusted” give the total simulation time (for all frames) to
perform the static solves, dynamic solves (including our approach), and the time to evaluate the adjusted physics terms in the equations of
motion, respectively. We add a volume preservation term to StVK which prevents large compressions and successfully guards against material
collapse. Stable neo-Hookean is from [SGK18].
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Figure 8: Control of frequency, damping and inertial amplitude while keeping the other two quantities fixed. Linear sunflower model.

Figure 9: Control of frequency and inertial amplitude. Nonlinear jellyfish. In (a), the animator used ε to adjust the inertial amplitude;
she did not change the frequency. In (b), she did not scale the inertia forces, but just adjusted the frequency. This automatically caused the
amplitudes to grow. In (c), she corrected this, using scaled inertia forces; and now, the amplitudes are back to what they were originally, but
the frequency is now half of the original one, as desired.

method, animators need to tweak the physical parameters directly,
and their relationship to the output visual characteristic is complex
and un-intuitive. Furthermore, independently tweaking frequency
and amplitude is not possible. Our method enables the animator
to directly and independently control the salient visual character-
istics of constrained dynamics, which shortens the trial and error
process during animation design. We demonstrated our method by
animating the geometric proxy point cloud using linear blend skin-
ning and pose-space deformation and simulating the soft-tissue dy-
namics using the Finite Element Method; but the idea is general

and applicable to other geometric animation and soft-body simula-
tion methods. In computer animation, we are primarily interested
in dynamic vibrations (often colloquially referred to as “jiggling”
by animators), and hence we only considered under-damped sys-
tems. Damping also changes the natural frequency of vibration; in-
corporating this effect would be relatively straightforward and we
leave it for future work. As they are often secondary in nature to
inertial dynamics, we did not attempt to modify the magnitude of
dynamic deformations occurring due to contact; doing so would be
interesting future work. Our physical parameter adjustment formu-
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Figure 10: Interplay of frequency and sag. Linear sunflower model. Bottom row shows that sag is as prescribed, regardless of frequency.
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Figure 11: Interplay of frequency and inertial amplitude scaling. Linear sunflower model. Bottom row shows that the amplitude approxi-
mately matches the prescribe one, regardless of frequency. While linearity makes it easier to directly match the desired amplitudes, the curves
in the bottom row are not flat due to the presence of damping which causes oscillations to go out of phase.
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las assume linear physics. Although such formulas are not exact for
nonlinear large deformation motion, they still provide guidance to
the animator. Creating more precise guidance for nonlinear dynam-
ics is important future work.
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