
A Deep Emulator for Secondary Motion of 3D Characters

Mianlun Zheng1, Yi Zhou2, Duygu Ceylan2, Jernej Barbič1
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Figure 1: a) Our method is trained on a primitive (sphere) dataset with deformation dynamics but generalizes across topology

varying 3D characters. The uniform volumetric mesh surrounding the surface mesh is used for prediction, where the red

vertices are set to be constraints. b) At inference time, the input is an artist-specified skinned mesh without dynamics. c) Our

neural network predicts the dynamic mesh with secondary motion. d) The surface mesh is rendered with textures.

Abstract

Fast and light-weight methods for animating 3D charac-

ters are desirable in various applications such as computer

games. We present a learning-based approach to enhance

skinning-based animations of 3D characters with vivid sec-

ondary motion effects. We design a neural network that

encodes each local patch of a character simulation mesh

where the edges implicitly encode the internal forces be-

tween the neighboring vertices. The network emulates the

ordinary differential equations of the character dynamics,

predicting new vertex positions from the current accelera-

tions, velocities and positions. Being a local method, our

network is independent of the mesh topology and general-

izes to arbitrarily shaped 3D character meshes at test time.

We further represent per-vertex constraints and material

properties such as stiffness, enabling us to easily adjust the

dynamics in different parts of the mesh. We evaluate our

method on various character meshes and complex motion

sequences. Our method can be over 30 times more efficient

than ground-truth physically based simulation, and outper-

forms alternative solutions that provide fast approximations.

1. Introduction

Fast and light-weight methods for animating 3D charac-

ters are desirable in various applications including computer

games and film visual effects. Traditional skinning-based

mesh deformation provides a fast geometric approach but

often lacks realistic dynamics. On the other hand, physically-

based simulation can add plausible secondary motion to

skinned animations, augmenting them with visually realistic

and vivid effects, but at the cost of heavy computation.

Recent research has explored deep learning methods to

approximate physically-based simulation in a much more

time-efficient manner. While some approaches have focused

on accelerating specific parts of the simulation [18, 7, 20],

others have proposed end-to-end solutions that predict dy-

namics directly from mesh based features [1, 11, 11, 25].

While demonstrating impressive results, these methods still

have some limitations. Most of them assume a fixed mesh

topology and thus need to train different networks for dif-

ferent character meshes. Moreover, in order to avoid the
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computational complexity of training networks on high reso-

lution meshes, some methods operate on reduced subspaces

with limited degrees of freedom, leading to low accuracy.

In this paper, we propose a deep learning approach to

predict secondary motion, i.e., the deformable dynamics of

given skinned animations of 3D characters. Our method

addresses the shortcomings of the recent learning-based ap-

proaches by designing a network architecture that can reflect

the actual underlying physical process. Specifically, our

network models the simulation using a volumetric mesh con-

sisting of uniform tetrahedra surrounding the character mesh,

where the mesh edges encode the internal forces that depend

on the current state (i.e., displacements, velocities, acceler-

ations), material properties (e.g., stiffness), and constraints

on the vertices. Mesh vertices encode the inertia. Motivated

by the observation that within a short time instance the sec-

ondary dynamics of a vertex is mostly affected by its current

state, as well as the internal forces due to its neighbors, our

network operates on local patches of the volumetric mesh.

In addition to avoiding the computational complexity of en-

coding high resolution character meshes as large graphs, this

also enables our method to be applied to any character mesh,

independent of its topology. Finally, our network encodes

per-vertex material properties and constraints, giving the user

the ability to easily prescribe varying properties to different

parts of the mesh to control the dynamic behaviour.

As a unique benefit of the generalization capability of our

model, we demonstrate that it is not necessary to construct

a massive training dataset of complex meshes and motions.

Instead, we construct our training data from primitive geome-

tries, such as a volumetric mesh of a sphere. Our network

trained on this dataset can generate detailed and visually

plausible secondary motions on much more complex 3D

characters during testing. By assigning randomized motions

to the primitives during training, we are able to let the local

patches cover a broad motion space, which improves the

network’s online predictions in unseen scenarios.

We evaluate our method on various character meshes and

complex motion sequences. We demonstrate visually plausi-

ble and stable secondary motion while being over 30 times

faster than the implicit Euler method commonly used in

physically-based simulation. We also provide comparisons

to faster methods such as the explicit central differences

method and other learning-based approaches that utilize

graph convolutional networks. Our method outperforms

those approaches both in terms of accuracy and robustness.

2. Related Work

2.1. Physically based simulation methods

Complementing skinning-based animations with sec-

ondary motion is a well-studied problem. Traditional ap-

proaches resort to using physically-based simulation [31, 30].

However, it is well-known that physically based methods

often suffer from computational complexity. Therefore, in

the last decade, a series of methods were proposed to ac-

celerate the computation process, including example-based

dynamic skinning [26], efficient elasticity calculation [19],

formulation of motion equations in the rig subspace [9, 10],

and the coupling of the skeleton dynamics and the soft body

dynamics [17]. These approaches still have some limita-

tions such as robustness issues due to explicit integration, or

unnatural deformation effects due to remeshing, while our

method is much more robust in handling various characters

and complex motions.

2.2. Learning based methods

Grzeszczuk et al. [8] presented one of the earliest works

that demonstrated the possibility of replacing numerical com-

putations with a neural network. Since then research in this

area has advanced, especially in the last few years. While

some approaches have presented hybrid solutions where

a neural network replaces a particular component of the

physically based simulation process, others have presented

end-to-end solutions.

In the context of hybrid approaches, plug-in deep neu-

ral networks were applied in combination with the Finite

Elements Method (FEM), to help accelerate the simulation.

For example, the node-wise NNWarp [18] was proposed to

efficiently map the linear nodal displacements to nonlinear

ones. Fulton et al.[7] utilized an autoencoder to project the

target mesh to a lower dimensional space to increase the

computation speed. Similarly, Tan et al. [28] designed a

CNN-based network for dimension reduction to accelerate

thin-shell deformable simulations. Romero et al. [22] built a

data-driven statistical model to kinematically drive the FEM

mechanical simulation. Meister et al. [20] explored the use

of neural networks to accelerate the time integration step of

the Total Lagrangian Explicit Dynamics (TLED) for com-

plex soft tissue deformation simulation. Finally, Deng et

al. [6] modeled the force propagation mechanism in their

neural networks. Those approaches improved efficiency but

at the cost of accuracy and are not friendly to end users who

are not familiar with physical techniques. Ours, instead, al-

lows the user to adjust the animation by simply painting the

constraints and stiffness properties.

End-to-end approaches assume the target mesh is pro-

vided as input and directly predict the dynamics behaviour.

For instance, Bailey et al. [1] enriched the real-time skinning

animation by adding the nonlinear deformations learned

from film-quality character rigs. The work of Holden et

al [11] first trained an autoencoder to reduce the simulation

space and then learned to efficiently approximate the dy-

namics projected to the subspace. Similarly, SoftSMPL [25]

modeled the realistic soft-tissue dynamics based on a novel

motion descriptor and a neural-network-based recurrent re-
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gressor that ran in the nonlinear deformation subspace ex-

tracted from an autoencoder. While all these approaches

presented impressive results, their main drawback was the

assumption of a fixed mesh topology requiring different net-

works to be trained for different meshes. Our approach,

on the other hand, operates at a local patch level and can

therefore generalize to different meshes at test time.

Lately, researchers started to utilize the Graph Convolu-

tional Network (GCN) for simulation tasks due to its advan-

tage in handling topology-free graphs. The GCN encodes

the vertex positional information and aggregates the latent

features to a certain node by using the propagation rule.

For particle-based systems, graphs are constructed based on

the local adjacency of the particles at each frame and fed

into GCNs [16, 29, 23, 5]. Concurrently, Pfaff et al. [21]

proposed a GCN for surface mesh-based simulation. While

these GCN models interpret the mesh dynamics prediction as

a general spatio-temporal problem, we incorporate physics

into the design of our network architecture, e.g. inferring la-

tent embedding for inertia and internal forces, which enables

us to achieve more stable and accurate results (Section 4.3).

3. Method

Given a 3D character and its primary motion sequence ob-

tained using standard linear blend skinning techniques [13],

we first construct a volumetric (tetrahedral) mesh and a set of

barycentric weights to linearly embed the vertices of the char-

acter’s surface mesh into the volumetric mesh [14], as shown

in Figure 2. Our network operates on the volumetric mesh

and predicts the updated vertex positions with deformable

dynamics (also called the secondary motion) at each frame

given the primary motion, the constraints and the material

properties. The updated volumetric mesh vertex positions

then drive the original surface mesh via the barycentric em-

bedding, and the surface mesh is used for rendering; such a

setup is very common and standard in computer animation.

We denote the reference tetrahedral mesh and its number

of vertices by X and n, respectively. The skinned animation

(primary motion) is represented as a set of time-varying

positions x ∈ R
3n. Similarly, we denote the predicted

dynamic mesh by U and its positions by u ∈ R
3n.

Our method additionally encodes mass m ∈ R
n and

stiffness k ∈ R
n properties. The stiffness is represented as

Young’s modulus. By painting different material properties

per vertex over the mesh, users can control the dynamic

effects, namely the deformation magnitude.

In contrast to previous works [25, 21] which trained neu-

ral networks directly on the surface mesh, we choose to

operate on the volumetric mesh for several reasons. First,

volumetric meshes provide a more efficient coarse repre-

sentation and can handle character meshes that consist of

multiple disconnected components. For example, in our ex-

periments the “Michelle” character (see Figure 2) consists

Figure 2: The tetrahedral simulation mesh and the embedded

surface mesh. The local patch consists of a center vertex

and its neighbors, defined as the vertices of the tetrahedra

touching the center vertex.

of 14k vertices whereas the corresponding volumetric mesh

only has 1k vertices. In addition, the “Big Vegas” charac-

ter mesh (see Figure 1) has eight disconnected components,

requiring the artist to build a watertight mesh first if using

a method that learns directly on the surface mesh. Further-

more, volumetric meshes not only capture the surface of

the character but also the interior, leading to more accurate

learning of the internal forces. Finally, we use a uniformly

voxelized mesh subdivided into tetrahedra as our volumet-

ric mesh, which enables our method to generalize across

character meshes with varying shapes and resolutions.

Next, we will first explain the motion equations in

physically-based simulation and then discuss our method

in detail, drawing inspiration from the physical process.

3.1. Physicallybased Motion Equations

In constraint-based physically-based simulation [2], the

equations of motion are

Mü+Du̇+ fint(u) = 0 (1)

subject to Cu = Sx(t),

where M ∈ R
3n×3n is the diagonal (lumped) mass matrix

(as commonly employed in interactive applications), D is

the Rayleigh damping matrix, and u ∈ R
3n, u̇ ∈ R

3n and

ü ∈ R
3n represent the positions, velocities and accelera-

tions, respectively. The quantity fint(u) represents the inter-

nal elastic forces. Secondary dynamics occurs because the

constraint part of the mesh “drives” the free part of the mesh.

Constraints are specified via the constraint matrix C and the

selection matrix S. In order to leave room for secondary

dynamics for 3D characters, we typically do not constrain

all the vertices of the mesh, but only a subset. For example,

in the Big Vegas example (see Figure 1), we constrain the

legs, the arms and the core inside the torso and head, but
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do not constrain the belly and hair, so that we can generate

secondary dynamics in those unconstrained regions.

One approach to timestep Equation 1 is to use an explicit

integrator, such as central differences:

u̇(t+ 1) = u̇(t) +
ü(t) + ü(t+ 1)

2
∆t,

u(t+ 1) = u(t) + u̇(t)∆t+ ü(t)
∆t2

2
,

(2)

where t and t+ 1 denote the state of the mesh in the current

and next frames, respectively, and ∆t is the timestep. While

the explicit integration is fast, it suffers from stability issues.

Hence, the slower but stable implicit backward Euler inte-

grator is often preferred in physically-based simulation [3]:

u̇(t+ 1) = u̇(t) + ü(t+ 1)∆t,

u(t+ 1) = u(t) + u̇(t+ 1)∆t.
(3)

We propose to approximate implicit integration as

u̇(t+ 1) = u̇(t)+

fθ

(

u(t), u̇(t), ü(t),x(t), ẋ(t), ẍ(t),m,k
)

∆t,

u(t+ 1) = u(t) + u̇(t+ 1)∆t,

(4)

where f is a differentiable function constructed as a neural

network with learned parameters θ.

3.2. Network design

As shown in Equation 1, predicting the secondary dynam-

ics entails solving for 3n degrees of freedom for a mesh with

n vertices. Hence, directly approximating fθ in Equation 4

to predict all the degrees of freedom at once would lead to

a huge and impractical network, which would furthermore

not be applicable to input meshes with varying number of

vertices and topologies. Inspired by the intuition that within

a very short time moment, the motion of a vertex is mostly

affected by its own inertia and the internal forces from its

neighboring vertices, we design our network to operate on

a local patch instead. As illustrated in Figure 3, the 1-ring

local patch consists of one center vertex along with its im-

mediate neighbors in the volumetric mesh. Even though

two characters might have very different mesh topologies,

as shown in Figure 2, their local patches will often be more

similar, boosting the generalization ability of our network.

The internal forces are caused by the local stress, and the

aggregation of the internal forces acts to pull the vertices to

their positions in the reference motion, to reduce the elastic

energy. Thus, the knowledge of the per-edge deformation

and the per-vertex reference motion are needed for secondary

motion prediction.

Simulator

Primary motion
Reference mesh: X

Secondary motion
Dynamic mesh: U

xi

xj uj

ui

Deep Emulator

Figure 3: The input reference mesh X and the target dynamic

mesh U . We draw the meshes in 2D for convenience.

Hence, we propose to emulate this process as follows:

z
inertia
i = f inertia

α (ui,xi, ki,mi),

z
internal force
i,j = f internal force

β (ui,j ,xi,j , ki,mi),

üi = gγ
(

z
inertia
i ,

∑

j∈Ni

z
internal force
i,j

)

,
(5)

where f inertia
α , f internal force

β and gγ are three different multi-

layer perceptrons (MLPs) as shown in Figure 4, Ni are neigh-

boring vertices of i (excluding i), and the double indices i, j
denote the central vertex i and a neighbor j. Quantities zinertia

i

and z
internal force
i are high dimensional latent vectors that rep-

resent an embedding for inertia dynamics and the internal

forces from each neighboring vertex, respectively. Percep-

tron gγ receives the concatenation of z
inertia
i and the sum

of zinternal force
i to predict the final acceleration of a vertex

i. In practice, for simplicity, we train gγ to directly predict

u̇(t + 1)∆t = u(t + 1) − u(t) since we assume a fixed

timestep of ∆t in our experiments.

We implement all the three MLPs with four hidden fully

connected layers activated by the Tanh function, and one

output layer. During training, we provide the ground truth

positions in the dynamic mesh as input. During testing, we

provide the predictions of the network as input in a recurrent

manner. Next, we discuss the details of these components.

cj

ui(t, t-1, t-2) - xi(t)

xi(t+1, t, t-1) - xi(t)

uj(t, t-1, t-2) - xi(t)

xj(t+1, t, t-1) - xi(t)

ki, mi, ki /mi

fα
inertia

fβ
internal-force

Zinertia

...…

gγ ui(t+1) - ui(t)

Zj
internal-force

Sum Poolingui(t, t-1, t-2) - xi(t)

ki, mi, ki /mi

xi(t+1, t, t-1) - xi(t)

Figure 4: Our network architecture.

MLP f inertia
α : This perceptron focuses on the center vertex

itself, encoding the “self-inertia” information. That is, the

center vertex tends to continue its current motion, driven by

both the velocity and acceleration. The input to f inertia
α is the
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position of the center vertex in the last three frames both on

the dynamic and skinned mesh, u(t),u(t− 1),u(t− 2) and

x(t + 1),x(t), x(t − 1), as well as its material properties,

ki,mi, ki/mi. The positions are represented in local coordi-

nates with respect to x(t), the current position of the center

vertex in the reference motion. The positions in the last three

frames implicitly encode the velocity and the acceleration.

Since we know that the net force applied on the central ver-

tex is divided by its mass in Equation 4 and it is relatively

hard for the network to learn multiplication or division, we

also include ki/mi explicitly in the input. The hidden layer

and output size is 64.

MLP f internal force
β : For an unconstrained center vertex i,

perceptron f internal force
β encodes the “internal forces” con-

tributed by its neighbors. The input to the MLP is similar to

f inertia
α , except that we provide information both for the center

vertex as well as its neighbors. For each neighboring vertex

j, we also provide the constraint information cj (cj = 0
if a free vertex; cj = 1 if constrained). Each f internal force

β

provides a latent vector for the central vertex. The hidden

layer and output size is 128.

MLP gγ: This module receives the concatenated outputs

from f inertia
α and the aggregation of f internal force

β , and predicts

the final displacement of the central vertex i in the dynamic

mesh. The input and hidden layer size is 192. We train the

final network with the mean square error loss:

l =
1

n

n
∑

i

||u̇i(t+ 1)− u̇
′

i(t+ 1)||2
2
, (6)

where u̇
′

i(t+ 1) is the ground truth. We adopted the Adam

optimizer for training, with a learning rate starting from

0.0001 along with a decay factor of 0.96 at each epoch.

3.3. Training Primitives

Because our method operates on local patches, it is not

necessary to train it on complex character meshes. In fact,

we found that a training dataset constructed by simulating

basic primitives, such as a sphere (under various motions

and material properties), is sufficient to generalize to vari-

ous character meshes at test time. Specifically, we generate

random motion sequences by prescribing random rigid body

motion of a constrained beam-shaped core inside the spher-

ical mesh. The motion of this rigid core excites dynamic

deformations in the rest of the sphere volumetric mesh. Each

motion sequence starts by applying, to the rigid core, a

random acceleration and angular velocity with respect to a

random rotation axis. Next, we reverse the acceleration so

that the primitive returns back to its starting position, and

let the primitive’s secondary dynamics oscillate out for a

few frames. While the still motions ensure that we cover

the cases where local patches are stationary (but there is

still residual secondary dynamics from primary motion), the

random accelerations help to sample a diverse set of motions

of local patches as much as possible. Doing so enhances the

networks’s prediction stability.

4. Experiments

In this section, we show qualitative and quantitative re-

sults of our method, as well as comparisons to other methods.

We also run an ablation study to verify why explicitly provid-

ing the position information on the reference mesh as input

is necessary.

4.1. Dataset and evaluation metrics

For training, we use a uniform tetrahedral mesh of a

sphere. We generate 80 random motion sequences at 24 fps,

using the Vega FEM simulator [4, 27]. For each motion

sequence, we use seven different material settings. Each

motion sequence consists of 456 frames resulting in a total

of 255k frames in our training set.

We evaluate our method on 3D character animations ob-

tained from Adobe’s Mixamo dataset [12]. Neither the char-

acter meshes nor the primary motion sequences are seen

in our training data. We create test cases for five different

character meshes as listed in Table 1 and 15 motions in total.

The volumetric meshes for the test characters use the same

uniform tetrahedron size as our training data. For all the

experiments, we report three types of metrics:

• Single-frame RMSE: We measure the average root-mean-

square error (RMSE) between the prediction and the

ground truth over all frames, while providing the ground

truth positions of the previous frames as input.

• Rollout RMSE: We provide the previous predictions of

the network as input to the current frame in a recurrent

manner and measure the average RMSE between the pre-

diction and the ground truth over all frames.

• Eelastic[min, stdev,max]: We use the concept of elastic

energy in physically-based simulation to detect abnormal-

ities in the deformation sequence, or any possible mesh

explosions. For each frame, we calculate the elastic en-

ergy based on the current mesh displacements with re-

spect to its reference state. We list the the min, max as

well as the standard deviation (stdev) to show the energy

distribution across the animation.

4.2. Analysis of Our Method

Performance: In Table 1, we show the speed tours of our

method, as well as that of the ground truth method tGT and

a baseline method tBL. For each method, we record the time

to calculate the dynamic mesh but exclude other components

such as initialization, rendering and mesh interpolation.

We adopted the implicit backward Euler approach (Equa-

tion 3) as ground truth and the faster explicit central differ-
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ences integration (Equation 2) as the baseline. Both our base-

line and ground truth were optimized using the deformable

object simulation library, Vega FEM [4, 27], and acceler-

ated using multi-cores via Intel Thread Building Blocks

(TBB), with 8 cores for assembling the internal forces and

16 cores for solving the linear system. The experiment plat-

form is with 2.90 GHz Intel Xeon(R) CPU E5-2690 (32

GB RAM) which provides for a highly competitive base-

line/ground truth implementation. We ran our trained model

on a GeForce RTX 2080 graphics card (8 GB RAM). We

also tested it on CPU, without any multi-thread acceleration.

Moreover, we also provide performance results for the

same character mesh (Big Vegas) with different voxel resolu-

tions. To handle different resolutions of testing meshes, we

resize the volumetric mesh to have the local patch similar to

the training data (i.e., the shortest edge length is 0.2).

character # vtx tGT tBL tGPU
ours tCPU

ours

Big vegas 1468 0.58 0.056 0.012 0.017

Kaya 1417 0.52 0.052 0.012 0.015

Michelle 1105 0.33 0.032 0.011 0.015

Mousey 2303 0.83 0.084 0.014 0.020

Ortiz 1258 0.51 0.049 0.012 0.015

Big vegas 6987 2.45 0.32 0.032 0.14

Big vegas 10735 4.03 0.53 0.046 0.24

Big vegas 18851 8.26 1.06 0.068 0.42

Big vegas 39684 24.24 2.96 0.14 0.89

Table 1: The running time (s/frame) of a single step (1/24

second) for the ground truth, the baseline, and our method.

Results indicate that when ran on GPU (CPU), our

method is around 30 (∼20) times faster than the implicit

integrator and 3 (∼2) times faster than the explicit integra-

tor, per frame. Under an increasing number of vertices, our

method has an even more competitive performance. Al-

though the explicit method has comparable speed to our

method, the simulation explodes after a few frames. In

practice, explicit methods require much smaller time steps,

which required additional 100 sub-steps in our experiments,

to achieve stable quality. We provide a more detailed report

on the speed-stability relationship of explicit integration in

the supplementary material.

Generalization: We train the network on the sphere dataset

and achieve a single frame RMSE of 0.0026 on the testing

split of this dataset (the sphere has a radius of 2). As listed

in Table 2, when tested on characters, our method achieves a

single frame RMSE of 0.0067, showing remarkable general-

ization capability (we note that the shortest edge length on

the volumetric character meshes is 0.2). The mean rollout

error increases to 0.064 after running the whole sequences

due to error accumulation, but elastic energy statistics are

still close to the ground truth. From the visualization of the

ground truth and our results in Figure 7, we can see that

although the predicted secondary dynamics slightly deviate

from the ground truth, they are still visually plausible. We

further plot the rollout prediction RMSE and elastic energy

of the Big Vegas character in Figure 5. It can be seen that

the prediction error remains under 0.07, and the mean elastic

energy of our method is always close to the ground truth for

the whole sequence, whereas the baseline method explodes

quickly. We provide such rollout prediction plots for all

characters and the video results1 in supplemental material.

0 50 100 150 200 250 300

Frames

10 -2

10 0

10 2

R
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a) Rollout prediction RMSE

0 50 100 150 200 250 300
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10 10

10 15

E
e
la

s
ti
c

b) Rollout elastic energy

Ours Ours w/o ref. motion Baseline

CFD-GCN [4] MeshGraphNets [20] GNS[22]

Ground truth

Figure 5: The rollout prediction results of our method and

others, tested on the Big Vegas character with 283-frame hip

hop dancing motion.

Non-homogeneous Dynamics: Figure 6 shows how to con-

trol the dynamics by painting non-homogeneous material

properties over the mesh. Varying stiffness values are painted

on the hair and the breast region on the volumetric mesh. For

better visualization, we render the material settings across the

surface mesh in the figure. We display three different mate-

rial settings, by assigning different stiffness k values. Larger

k means stiffer material, hence the corresponding region

exhibits less dynamics. In contrast, the regions with smaller

k show significant dynamic effects. This result demonstrates

that our method correctly models the effect of material prop-

erties while providing an interface for the artist to efficiently

adjust the desired dynamic effects.

Ablation study: To demonstrate that it is necessary to incor-

porate the reference mesh motion into the input features of

1Videos results are available at https://zhengmianlun.

github.io/publications/deepEmulator.html.
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Methods single frame rollout-24 rollout-48 rollout-all
Eelastic

[min, stdev,max]
Ground truth \ \ \ \ [3.81E3, 4.06E5, 2.60E6]
Our method 0.0067 0.059 0.062 0.064 [4.84E3,6.51E5,6.32E6]
Ours w/o ref. motion 0.050 0.20 0.38 10.09 [1.62E4, 6.7E16, 4.7E17]
Baseline \ 7.26E120 9.63E120 17.5E120 [9.26E0, Nan, 7.22E165]
CFD-GCN [5] 0.040 41.17 70.55 110.07 [3.96E4, 1.1E22, 1.6E23]
GNS [23] 0.049 0.22 0.34 0.54 [1.09E4, 2.0E11, 2.3E10]
MeshGraphNets [21] 0.050 0.11 0.43 4.46 [1.69E4, 1.1E15, 1.1E14]

Table 2: The single-frame RMSE, rollout-24, rollout-48 and rollout-all of our method and others tested on all five characters

with 15 different motions. The shortest edge length in the test meshes is 0.2.
10 40 112

00:01  00:02 00:05

0 ≥0.2
dynamic

constraints;
k = 50,000;
k = 5,000,000;

Figure 6: Non-homogeneous dynamics, tested on the

Michelle character with 122-frame cross-jumps motion. We

only show the upper region (see Figure 2 for the full mesh).

our network, we performed an ablation study. To ensure that

the constrained vertices are still driving the dynamic mesh

in the absence of the reference information, we update the

positions of the constrained vertices based on the reference

motion, at the beginning of each iteration. As input to our

network architecture, we use the same set of features except

the positions on the reference mesh. The results of “Ours

w/o ref. motion” in Table 2 and Figure 7 and 5 demonstrate

that this version is inferior to our original method, especially

when running the network over a long time sequence. This

establishes that the reference mesh is indispensable to the

quality of the network’s approximation.

4.3. Comparison to Previous Work

As discussed in Section 2, several recent particle-based

physics and mesh-based deformation systems utilized graph

convolutional networks (GCNs). In this section, we train

these network models on the same training set as our method

and test on our character meshes.

CFD-GCN [5]: We implemented our version of the CFD-

GCN architecture, adopting the convolution kernel of [15].

However, we ignored the remeshing part because we assume

that the mesh topology remains fixed when predicting sec-

ondary motion. As input, we provide the same information

as our method, namely the constraint states of the vertices,

the displacements and the material properties. We found that

the network structure recommended in the paper resulted in a

high training error. We then replaced the originally proposed

ReLu activation function with the Tanh activation (as used

in our method), which significantly improved the training

performance. Even so, as shown in Table 2 and Figure 5, the

rollout prediction explodes very quickly. We speculate that

although the model aggregates the features from the neigh-

bors to a central vertex via an adjacency matrix, it treats

the center and the neighboring vertices equally, whereas in

reality, their roles in physically-based simulation are distinct.

GNS [23]: The recently proposed GNS [23] architecture

is also a graph network designed for particle systems. The

model first separately encodes node features and edge fea-

tures in the graph and then generalizes the GraphNet blocks

in [24] to pass messages across the graph. Finally, a decoder

is used to extract the prediction target from the GraphNet

block output. The original paper embeds the particles in a

graph by adding edges between vertices under a given radius

threshold. In our implementation, we instead utilized the

mesh topology to construct the graph. We used two blocks

in the “processor” [23] to achieve a network capacity similar

to ours. In contrast to CFD-GCN [5], the GraphNet block

can represent the interaction between the nodes and edges

more efficiently, resulting in a significant performance im-

provement in rollout prediction settings. However, we still

observe mesh explosions after a few frames, as shown in

Figure 7 and in the supplementary video.

MeshGraphNets [21]: In concurrent work to us, Mesh-

GraphNets [21] were presented for physically-based simu-

lation on a mesh, with an architecture similar to GNS [23].

The Lagrangian cloth system presented in their paper is the

most closely related approach to our work. Therefore, we
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Figure 7: The rollout prediction results of our method and others tested on the Big Vegas character with 283-frame hip hop

dancing motion. The baseline cannot be rendered because it explodes.

followed the input formulation of their example, except that

we used the reference mesh to represent the undeformed

mesh space as the edge feature. In our implementation, we

keep the originally proposed encoders ǫM and ǫV that embed

the edge and node features, but exclude the global (world)

feature encoder ǫW , because it is not applicable to our prob-

lem setting. Similarly, we kept the MLPs fM and fV , but

removed the fW inside the graph block. We used 15 graph

blocks, as suggested by their paper. The network has 10

times more parameters than ours; 2,333,187 parameters com-

pared to our 237,571 parameters. Training lasted for 11 days,

whereas our network was trained in less than a day.

We report how MeshGraphNets perform on our test char-

acter motions in Table 2. The overall average rollout RMSE

of MeshGraphNets is worse than GNS [23]. Nevertheless,

we note that out of 15 motions, this approach achieved 5 sta-

ble rollout predictions without explosions, while GNS [23]

failed on all of them. Our method outperforms each of the

compared methods with respect to the investigated metrics.

5. Conclusion

We proposed a Deep Emulator for enhancing skinning-

based animations of 3D characters with vivid secondary

motion. Our method is inspired by the underlying physi-

cal simulation. Specifically, we train a neural network that

operates on a local patch of a volumetric simulation mesh

of the character, and predicts the updated vertex positions

from the current acceleration, velocity, and positions. Being

a local method, our network generalizes across 3D character

meshes of arbitrary topology.

Ours

Ground truth

While our method demonstrates

plausible secondary dynamics for

various 3D characters under complex

motions, there are still certain limi-

tations we would like to address in

future work. Specifically, we demon-

strated that our network trained on

a dataset of a volumetric mesh of a

sphere can generalize to 3D charac-

ters with varying topologies. How-

ever, if the local geometric detail of a character is signifi-

cantly different to those seen during training, e.g., the ears of

the mousey character containing many local neighborhood

not present in the sphere training data, the quality of our

output decreases. One potential avenue for addressing this is

to add additional primitive types to training, beyond tetrahe-

dralized spheres. A thorough study on the type of training

primitives and motion sequences required to cover the un-

derlying problem domain is an interesting future direction.
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