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Abstract Physics-based deformation simulation demands
much time in integration process for solving motion equa-
tions. To ameliorate, in this paper we resort to structural
mechanics and mathematical analysis to develop a novel
unconditionally stable explicit integration method for both
linear and nonlinear FEM. First we advocate an explicit
integration formula with three adjustable parameters. Then
we analyze the spectral radius of both linear and nonlinear
dynamic transfer function’s amplification matrix to obtain
limitations for these three parameters to meet unconditional
stability conditions. Finally, we theoretically analyze the
accuracy property of the proposed method so as to optimize
the computational errors. The experimental results indicate
that our method is unconditionally stable for both linear and
nonlinear systems and its accuracy property is superior to
both common and recent explicit and implicit methods. In
addition, the proposed method can efficiently solve the prob-
lem of huge computation cost in integration procedure for
FEM.
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1 Introduction

The widespread use of physics-based simulations of
deformable objects has been enabling abundant applications
such as computer games, virtual reality systems, com-
puter animation. To efficiently and accurately simulate the
object’s physical behaviors of deformation, many funda-
mental methodologies, ranging from finite element method
(FEM) [1] together with their GPU acceleration [2,3] to var-
ious types of flexible mesh-free methods, have been well
devised to accommodate the application-specific require-
ments [4]. However, in physical modeling, the partial dif-
ferential equations of solid continuum mechanics are quite
demanding and permit few computational shortcuts [5].
Therefore, there are a lot of methods trying to explore effec-
tive and flexible numerical approaches so as to solve the
problem to reach high update frame rates.

In fact, the most computational time-consuming part of
physics-based animation methods like FEM is exactly the
integrating solution procedure for dynamic equations, where
implicit integration method is adopted most frequently. In
particular, as the number of degrees-of-freedomparticipating
in calculation gets larger, the computational costwill increase
correspondently.

In principle, in field of structural mechanics, step-by-
step time integration methods are widely used to solve the
dynamic motion equations, which are usually sorted into two
types: explicit and implicit [6]. For explicit integration meth-
ods, the systemmatrices for solving the displacements at next
step are known and keep constant at the beginning and also
during calculation, while the computation of implicit inte-
gration methods mainly depends on the motion responses
in each time step, which would change in simulation. As a
result, while dealing with the same model, explicit methods
cost less time for integration than implicit methods.
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Compared to explicitmethods,most implicitmethods pos-
sess the advantage of unconditionally stability. With regard
to explicit methods, although most are conditionally stable,
the computational cost for explicit methods is far less than
that of implicit methods because of no factorization of any
unknown systemmatrices.Moreover, the advantage for time-
consuming promotion is more significant when the number
of calculation dimensions gets larger.

In a word, the key technical challenges of presenting
a new explicit integration method are highlighted as fol-
lows: (a) From the perspective of computation stability, the
explicit method has to be unconditionally stable; (b) Com-
mon explicit integration methods are explicit only for linear
system, but such methods also have no advantage of com-
putational efficiency when encountering nonlinear system
equipped with variable dampers. So the proposed method is
supposed to be explicit and stable for both linear and nonlin-
ear systems; (c) As far as accurate performance is concerned,
the numerical property of the method to be presented should
be superior to existing methods, so as to assure the modeling
precision for physical animation method FEM.

In this paper, we resort to structural mechanics and math-
ematical analysis areas to solve the challenges above and
develop a novel explicit integration method mainly for FEM
in order to handle both efficient and stable deformation sim-
ulation. And the salient contributions of this paper include:

1. We present a novel explicit integration method which
is unconditionally stable for both linear and nonlinear
systems, compared to most existing explicit integration
methods.

2. From the perspective of numerical accuracy property,
there are 3 adjustable variable parameters in our inte-
gration formulas which can be determined according to
the current calculation conditions, so as to optimize the
calculation errors. More significantly, the accuracy prop-
erty of our method is superior to both common and recent
explicit and implicit methods.

3. We redescribe FEM using the proposed integration
method, where the calculation procedure for dynamic
equations at each time step is much more intuitive and
convenient compared to current integration methods.

4. The last but not the least, the performed simulation
experiments of FEM indicate that the proposed explicit
integration method can more efficiently solve the prob-
lem of huge computational cost in integration procedure,
compared to implicit methods.

Superiorities above enable us to assure both efficient and
accurate simulations of FEM. As a side note, the derivation
process of ourmethod in this paper is also applicable for other
physics-based methods with dynamic integration procedure.

2 Related work

Closely relevant to the central theme of this paper, in this
section we briefly give out two previous work in follow-
ing aspects: finite element method (FEM) and its integration
methods.

Finite element method (FEM)
FEMhas been proven to be a powerful approach to accurately
simulate the physical and mechanical principles underlying
deformable models. Erleben et al. [1] detailedly described
the whole modeling and simulation process for FEM in their
book. During the simulation process of FEM, the modeling
object is represented as a 3D volumetric mesh by dividing
the object into a large number of elements and the simulation
is prescribed (controlled) by the displacements of the mesh
vertices.

Although fully physics-based FEM is widely considered
as reliable and accurate ways to simulate deformable objects,
its main shortcoming is that it is computationally demand-
ing [4], especially for its integration process. Therefore,
researchers in areas of computational physics, mechanics,
and applied mathematics have been developing a great deal
of novel algorithms to solve the problem.

Hirota et al. [7] introduced a novel penalty method based
on the concept of material depth to analytically interpolate
contact forces over surfaces without raising the computa-
tional consumption. Choi et al. [8] regarded the rotational
component as an infinitesimal deformation tracked by tradi-
tional linear modal analysis. By integrating small rotations,
authors realized real-time simulation for large deforma-
tions. Yang et al. [9] put forward a novel framework for
multi-domain subspace deformation to achieve real-time
simulation, which used the Lagrange multiplier technique
to impose coupling constraints at the boundary.

Model reduction has popularized itself for simplifying
simulation of dynamical systems described by differential
equations [10]. Barbic [5,11] presented an automatic modal
derivative approach to select quality low-dimensional basis
vectors and an algorithm for fast simulation of the resulting
nonlinear dynamics. Yang et al. [12] proposed a complete
system of precomputation pipeline as a faster alternative
to the classic linear and nonlinear modal analysis. How-
ever, although model reduction plays a satisfactory role,
researchers still face a fundamental problem about making
well tradeoff between computation speed and simulation pre-
cision.

Integration methods
It requires a complex integration solving process for ordi-
nary differential equations in deformable simulations [13].
Generally, the integration methods can be classified into two
types: explicit and implicit, and they both possess their own
advantages and disadvantages [14].
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Most implicit integrationmethods are unconditionally sta-
ble, such as the Erleben method [1], Newmarks’ constant
accelerationmethod [15,16] andWilson-θ method [17]. This
implies their time step is limited only by the convergence
or accuracy considerations. However, these methods have
to solve differential equations at each time step [6], thus
causing large computation cost. In contrast, the factorization
of system matrix is not required for most explicit methods,
which saves a lot of computational cost. But it exists an obvi-
ous problem of conditionally stability for those traditional
explicit methods such as the central difference [18] and the
explicit Newmark method [15]. Normally, a severe restric-
tion on the time step has to be applied in order to receive
satisfactory simulation results [19].

For improvements of implicit integration methods, Kang
et al. [20] presented an approximate implicit method for
creating animation of flexible objects. The method mainly
focused on the mass-spring model, and it took O(n) time for
integration when the number of springs is O(n). In addition,
Oh et al. [21] proposed a new implicit integration method for
stable cloth simulation, which decreased the damping arti-
facts rather than introduced excessive damping forces. But
these two methods are not suitable for simulations with a
large number of mass points due to generation of undesir-
able results.

Furthermore, researchers also proposed several uncon-
ditionally stable explicit methods to eliminate the stability
drawback. Chang et al. [22–24] put forward a series of
explicit algorithms with excellent stability as well as Ding
et al. [25]. Nevertheless, if provided with a nonlinear sys-
tem whose damping or stiffness parameters does not keep
constant, the Chang family methods are required to solve
nonlinear equations due to non-diagonal damping or stiffness
matrix. Consequently, for a nonlinear system, these explicit
methods lose advantages of computation efficiency. To over-
come such problem,manymethods are proposed to explicitly
solve the nonlinear dynamics equations, such as Chang et
al. [26], Chen et al. [27], andYao et al. [6].Methods of Chang
[26] and Chen [27] offer an explicit estimate of velocity and
displacement as well. Although they are unconditionally sta-
ble for any linear elastic or stiffness softening system, they
are still conditionally stable for an instantaneous stiffness
hardening system. Yao et al. [6] developed a new series of
explicit integration methods based on the discrete control
theory whose accuracy and stability properties are very well
for both linear and nonlinear systems. However, the calcula-
tion stage at each time step for FEM of the methods is quite
complex.

For other areas of deformation simulation like position-
based dynamics, researchers have developed a set of
approaches for integration process. Bouaziz et al. presented a
newmethod for implicit time integration of physical systems,
which builds a bridge between nodal finite element methods

and position-based dynamics, leading to a simple, efficient,
robust and accurate solver [28].Wang et al. demonstrated the
use of the Chebyshev semi-iterative approach in projective
and position-based dynamics to accelerate the convergence
by at least one order of magnitude [29]. Wang et al. also
proposed a gradient descent method using Jacobi precon-
ditioning and Chebyshev acceleration for elastic body sim-
ulation approaches. Moreover, with step length adjustment,
initialization and invertiblemodel conversion techniques, the
final method is simple, fast, scalable, memory-efficient and
robust [30]. Liu et al. [31] interpreted projective dynamics
as a quasi-Newton method that enables very efficient simu-
lation of hyperelastic materials, and the final method is more
than 10 times faster than one iteration of Newton’s method.

3 Basics

In this paper, the proposed method mainly aims at finite ele-
ment method (FEM), and its derivation process could be
extended to other physics-based methods with dynamic inte-
gration procedure. In this section,we give a brief introduction
about FEM and its two integration methods: the implicit and
explicit integration method.

3.1 Finite element method

In FEM, the continuous vibration is replaced by a finite num-
ber of displacements [32]. For a multiple-degree-of-freedom
(MDOF), solid, dynamic, damped FEM system, an ordinary
differential equation of motion can be expressed as,

Müi + D(u̇i ) + K (ui ) = Fi (1)

where i stands for the current time step, u ∈ R3n contains the
displacements of n mesh vertices away from the rest config-
uration, M ∈ R3n,3n is the mass matrix, D

(
u̇i

) ∈ R3n is the
damping force, K (ui ) ∈ R3n is the internal elastic force and
Fi ∈ R3n restores the external forces like gravity, pushing,
dragging etc.

K (ui ) = K · ui and K ∈ R3n,3n is called the tangent
stiffness matrix. Similarly, D

(
u̇i

) = D · u̇i and D ∈ R3n,3n

is called the damping matrix. Moreover, by setting values
of K and D, one can obtain either linear or nonlinear FEM
system.

During simulation, Eq. 1 has to be solved for each time
step to obtain the new displacement u and its calculation
scale depends on the number of mesh vertices n. As a result,
the computational cost increases when the value of n gets
larger. If dealing with a certain model with more than 104

element vertices, the computing speed of traditional FEM is
rather slow which leads to abnormal simulation display.
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3.2 Implicit and explicit integration method

For the sake of simulation stability, the most widely used
integration method for solving Eq. 1 is implicit method with
unconditionally stability. A popular one in structural dynam-
ics is the implicit Newmark integrator [5,33], which assumes
the expressions of u̇i+1 and ui+1 as follows:

u̇i+1 = u̇i + [(1 − δ)üi + δüi+1]Δt (2)

ui+1 = ui + u̇iΔt + [(−1/2 − α)üi + αüi+1]Δt2 (3)

To assure the method to be unconditionally stable, the
values of δ and α must meet the conditions of δ ≥ 0.5,
α ≤ 0.25(0.5 + δ)2. Here we choose δ = 0.5, α = 0.25,
which is a common setting for many applications. Besides,
the method is second-order accurate in terms of local error.

Basically, one implicit Newmark time step means solving
the current dynamic equilibriumequations ofmotion, namely
Eq. 1. By inserting Eqs. 2 and 3 into the motion equation and
solving it, we can finally get the results. A detailed algorithm
of one step of the implicit Newmark subspace integration is
shown in Algorithm 1.

Algorithm 1 The implicit Newmark integration method
Input: values of ui , u̇i , üi at time step i ; external force Fi+1 at time

step i+1; time step sizeΔt ; max number of iterations per step jmax ;
tolerance T OL to avoid unnecessary iteration.

Output: values of ui+1, u̇i+1, üi+1 at time step i + 1.
1: ui+1 ← ui ;
2: for j = 1 to jmax do
3: Calculate internal forces R(ui+1)

4: Calculate stiffness matrix K (ui+1);
5: Calculate the damping matrix D = M + βK (ui+1);
6: Calculate the system matrix A = α1M + α4C + K (ui+1);
7: residual ← M(α1(ui+1 − ui ) − α2 u̇i − α3 üi ) + C(α4(ui+1 −

ui ) + α5 u̇i ) + R(qi+1) − Fi+1;
8: if ||residual||2 < T OL then
9: break out of for loop;
10: end if
11: Solve the symmetric system: A (Δui+1) = −residual;
12: ui+1 ← ui+1 + Δui+1;
13: end for
14: u̇i+1 ← α4(ui+1 − ui ) + α5 u̇i ;
15: üi+1 ← α1(ui+1 − ui ) − α2 u̇i − α3 üi ;
16: return ui+1, u̇i+1, üi+1;

In Algorithm 1, parameters are set as follows: α1 =
4/Δt2, α2 = 4/Δt, α3 = 1, α4 = 2/Δt, α5 = −1. It
can be seen in Algorithm 1 that it requires recalculation
(Line 6) and factorization (Line 11) of the system matrix
A = α1M + α4C + K (ui+1) in each iteration of one time
step due to its non-constant feature. Consequently, the com-
putational cost for implicit integration method is in direct
proportion to the square of the number of degrees of free-
dom.

Table 1 Experimental models and their integration time (ms), frame
rate (FPS) for implicit Newmark integration (Algorithm 1)

Model Vertices Facets Elements Time (ms) FPS

Kidney 854 1472 433 157.0 6.3

Armadillo 2905 25,200 1499 429.0 2.3

Bunny 5553 41,330 2819 780.0 1.2

Lung 8334 86,084 4188 1298.0 0.7

Heart 9580 95,729 5607 1610.0 0.6

Brain 12,473 110,046 6605 1940.0 0.5

Furthermore, there also exists the other integrationmethod
called explicit integration which costs less time. A general
explicit method is central difference, which is used to express
velocity and acceleration at a certain point as,

u̇i = (ui+1 − ui−1)

2Δt
(4)

üi = (ui+1 − 2ui + ui−1)

Δt2
(5)

Insert Eqs. 4 and 5 into Eq. 1 we can get an explicit
dynamic equation for ui+1,

(
M + Δt

2
D

)
ui+1 = Δt2 (Fi − K (ui ))

+Δt

2
Dui−1 + M (2ui − ui−1) (6)

It is quite obvious that for a linear system, the matrix(
M + Δt

2 D
)
is constant and can be precomputed and fac-

torized in preprocess stage. Thus the computation cost is
proportional to the number of degrees of freedom. Compared
with implicit method, the explicit method has the advantage
of less computation consumption. Furthermore, if the num-
ber of elements for simulation becomes larger, the superiority
of explicit method will be more significant.

However, the explicit method does exist two shortcom-
ings. Thefirst one is that for a systemequippedwith nonlinear
dampers, the explicit algorithmhas no advantage of computa-
tional efficiency. Secondly, when the time step is rather large,
the computational error of the explicit scheme will accumu-
late over time, thus causing the dynamic system extremely
unstable.

3.3 Experimental data

In this paper,wemainly adopt six simulationmodelswith dif-
ferent numbers of elements to perform the experiments. The
detailed information of these six models is listed in Table 1.

We have obtained integration time (ms) and frame rate
(FPS) of the implicit method shown in Algorithm 1 in
advance. Table 1 shows only the integration time of one
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Fig. 1 The implicit Newmark integration time (Algorithm 1) for six
models with different values of max iterations

iteration per time step, which means jmax (max number of
iterations per step) in Algorithm 1 is set as 1 (also called
semi-implicit method). In addition, the value of T OL is set
as 10−6. While considering values of frame rate, we here
ignore the rendering time for models because it will be influ-
enced by model’s complexity.

As indicated in Table 1, it takes 157.0 ms per iteration
for Kidney model with 433 simulation elements. Obviously
such integration time will lead to unacceptable frame rate,
let alone those models with more elements. If the number of
elements exceeds approximately 3000, the frame rate will be
<1 FPS.

Meanwhile, we set jmax as two other values, 3 and 5, and
obtain their integration time, as shown in Fig. 1. Similarly,
the integration time increases greatly with the increase in
elements, especially for more iterations per integration time
step.

Although the implicit integration method is considered
as a pretty one for stable FEM simulation, it still needs
to be improved due to its demanding computational cost.
Therefore, in consideration of the strength and weaknesses
of explicit integration method, this paper aims at proposing a
new explicit integration method for dynamic equation solu-
tion to improve FEM’s computational efficiency.

4 Development of a novel explicit method

In this section, we present a novel unconditionally stable
explicit integration method for both linear and nonlinear
FEM. Firstly, we present an explicit integration formula with
three unknown parameters. Then by analyzing the spectral
radius of transfer function’s amplification matrix, the range
of three parameters is determined so as to meet the uncondi-
tional stable condition. Finally, we give a detailed description
for FEM with the proposed integration method.

4.1 Integration for linear system

Firstly, we adopt Taylor’s expansion to derivate the expres-
sions of velocity u̇i+1 and displacement ui+1, which is
similar to the derivation of central difference method as,

u̇i+1=u̇i+üiΔt + u(3)
i

Δt2
2 + · · · + u(m+1)

i
Δtm
m! + o(Δt)m

(7)

ui+1=ui+u̇iΔt + üi Δt2
2 + · · · + u(m)

i
Δtm
m! + o(Δt)m

(8)

In Eqs. 7 and 8, save the term of ui , u̇i , üi for expressions
of u̇i+1 and ui+1. The rest terms do not appear in a dynamic
equations, so we omit them and use a coefficient α to adjust
the formula instead, in order to compensate the errors.
{
u̇i+1 = u̇i + αüiΔt
ui+1 = ui+u̇iΔt + αüiΔt2

(9)

α is an integration parameter to be determined, and Δt is
the time step size. Next, we substitute Eq. 9 into Eq. 1 so
as to obtain explicitly integration motion equation. Besides,
for more convenient and simply representation in the follow-
ing analysis, we here use 1/α to replace α in all formulas
followed.

αMui+1 = Δt2 (Fi − K (ui )) + DΔt (ui−1 − ui )
+αM (2ui − ui−1)

(10)

TransformEq. 10 into a discrete transfer function of recur-
sive matrix form as,

[
ui+1

ui

]
= U

[
ui
ui−1

]
+ F (11)

where U is the amplification matrix and F is related to the
external force which are defined as,

U =
[

−K2Δt2−DΔt+2αM
αM

DΔt−αM
αM

1 0

]

(12)

F = 1

αM
Δt2Fi (13)

According to the discrete control theory [34,35], the sta-
bility of a transfer function relies on its amplificationmatrix’s
spectral radius. If the value of spectral radius (the maximum
absolute eigenvalues) is always less than 1 for any time step
size, the system is unconditionally stable. For simplicity, α

is derived from a single-degree-of-freedom (SDOF) system
in the following. Rewrite the expression of matrix U into a
linear SDOF system format and insert k = mω2, d = 2ξωm,
ωΔt = Ω = Δt/T into it (here m is the mass, ω is the nat-
ural vibration frequency, ξ is the viscous damping ratio and
T is the natural vibration period), we can finally obtain,
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U =
[

−Ω2−2Ωξ+2α
α

2Ωξ−α
α

1 0

]

(14)

In order to analyze the spectral radius of matrixU , we use

A = −Ω2−2Ωξ+2α
α

and B = 2Ωξ−α
α

to simplify the matrix
U as,

U =
[
A B
1 0

]
(15)

The characteristic equation for amplificationmatrixU can
be derived by solving the equation of |U − λI | = 0 and it is
found to be,

f (λ) = λ2 − Aλ − B = 0 (16)

where λ is the eigenvalue and I is a unit matrix.
According to Eq. 16, the two characteristic roots can be

expressed as,

λ1,2 = A ± √
A2 + 4B

2
(17)

Taking unconditional stability into consideration, |λ1| and
|λ2| have to be less than 1 for any value of Ω . While observ-
ing the formula of

∣∣λ1,2
∣∣, A and B, we will definitely find that

if A = −Ω2−2Ωξ+2α
α

and B = 2Ωξ−α
α

tend toward infinitude
when Ω is infinite, the unconditional stability will not be
satisfied. Hence, here comes to a conclusion that the expres-
sion of α must contains a term of Ω2 in order to avoid

∣
∣λ1,2

∣
∣

tending toward more than 1 with the increasement of Ω .
Since then, the expression of α is assumed as,

α = pΩ2 + qΩξ + r (18)

where p, q and r are all uncertain parameters to be deter-
mined. Next, we will determine the parameters of p, q and
r to satisfy the conditions of unconditional stability for the
proposed method.

1. If A2 + 4B < 0 in Eq. 17, λ1,2 are complex numbers.
The modulus of λ1,2 is

∣∣λ1,2
∣∣ =

√√
√√

(
A

2

)2

+
(√

A2 + 4B

2

)2

= √−B (19)

In this case, the unconditional stability condition can be
derived from A2 + 4B < 0 and

√−B ≤ 1 as,

−1 ≤ B < − A2

4
(20)

2. If A2 + 4B ≥ 0, then λ1,2 are real numbers. Because
Eq. 16 represents a parabolic curve opening upward, the
unconditional stability condition of

∣∣λ1,2
∣∣ < 1 leads to

the following inequalities:

f (1) ≥ 0; f (−1) ≥ 0;−1 ≤ A

2
≤ 1 (21)

From the inequalities in Eq. 21 and A2 + 4B ≥ 0, the
unconditional stability condition can be derived as,

B ≥ − A2

4
; B ≤ 1 − A; B ≤ 1 + A;−2 ≤ A ≤ 2 (22)

Combining Eqs. 20, 22 and α = pΩ2 + qΩξ + r results
in the following unconditional stability condition of the pro-
posed explicit integration method for a linear system:

p ≥ 1

4
; q ≥ 1; r ≥ 0 (23)

Up to now, we have analyzed the expression and uncondi-
tional stability condition of the proposed explicit integration
method via SDOF system. Here we recommend litera-
ture [36–38] for details of how results of α could be extended
to MDOF system. If dealing with the MDOF system, α

should be rewritten as the following equation and the lim-
itation for p, q and r is the same as the SDOF system.

α = pKΔt2 + q
2 DΔt + rM

M
(24)

4.2 Integration for nonlinear system

For a SDOF structure systemwith nonlinear stiffness or non-
linear damping, α is assumed to be invariant in the entire
integration procedure and is determined from the initial
damping ratio d0 and the stiffness value k0 [6] as,

α = pΩ0
2 + qΩ0ξ + r (α > 0) (25)

Hence, the amplification matrix U can be changed to,

U =
[

−Ωi
2−2Ωi ξ+2α

α
2Ωi ξ−α

α

1 0

]

(26)

And with the same analysis step in Sect. 4.1, the uncondi-
tionally stable condition for nonlinear SDOF system can be
derived as,

p ≥ ω2
i

4ω2
0

; q ≥ ωi

ω0
; r ≥ 0 (27)

Back to the nonlinear MDOF system, α is determined as,
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α = pK0Δt2 + q
2 D0Δt + rM

M
(28)

4.3 Description of FEM with the proposed method

Initialization

1. Initialize nodal displacements: ui = ui−1 = 0.
2. Initialize the chosen time step size.
3. Apply load for the first time step: forces Fi ← F0.
4. Obtain the damping matrix Di and stiffness matrix Ki

(Di and Ki keep invariable for linear system).

Precomputation stage

1. Load mesh and boundary conditions.
2. Select perfect values of p, q and r according to model’s

physical property and time step size. Compute and diag-
onalize the matrix αM = pK0Δt2 + q

2 D0Δt +rM (if
the system is linear, then K0 = Ki , D0 = Di ).

Time stepping

1. Take element nodal displacements ui and ui−1 from pre-
vious time step.

2. Perform the proposed explicit integration method:
(1) Evaluate internal force Ki (ui ) and damping force
Di

(
u̇i

)
.

(2) Obtain the external force Fi .
(3) Obtain the current displacement ui+1 by solving the
equation: αMui+1 = Δt2 (Fi − Ki (ui )) +
DiΔt (ui−1 − ui )+ αM (2ui − ui−1).

3. Update nodal displacement ui and ui−1.

Since the matrix αM is invariant during the whole com-
putation, there is no need for solution of coupled equation
in the algorithm . As a consequence, the computation cost
is saved a lot by adopting the proposed explicit integration
method, which is testified in detail in the next section.

5 Experiments and results

In this section, we have done two experiments to testify our
method for linear system (since the analysis for nonlinear
system is similar, thus here we do not show it). The first
one is to compare the numerical properties of the proposed
methodwith other existing unconditionally stable integration
method. Then we conducted experiments to utilize both the
implicit and proposed methods into FEM to compare their
computational cost and deformation effects.

The main configuration of our experimental platform is as
follows: Intel� Xeon� CPU E3-1230 V2 3.30GHz quad-
core processor, 8.0GB memory.

5.1 Numerical properties

5.1.1 Stability

To verify the stability property, we operated experiments
for several existing integration methods and the proposed
method with different values of p, q and r .

First of all, we analyze the stable property for the gen-
eral central difference explicit method [19] and the general
implicit method [1] by spectral radius.

Next, we perform experiments for several integration
methodsofChang [24],Gui [6] andDing [25],whosedetailed
equations are shown in these papers. It is worth mention-
ing that these three methods are all unconditionally stable
explicit, but they do have differences from our proposed
method. These three methods are explicit for terms of üi ,
while our method is explicit for terms of ui . The solution
strategy for Chang [24], Gui [6] and Ding [25] is as follows:
firstly compute velocity u̇i and displacement ui ; then sub-
stitute u̇i and ui into their integration algorithm to obtain
the acceleration term üi which can be used to calculate dis-
placement ui+1. Obviously, the calculation stage for these
three methods is more complex than ours. Besides, both
Chang [24] and Gui [6] take nonlinear system into con-
sideration but Ding [25] does not. After we have expanded
equations in Ding [25], it is found that its integration formula
is the same as that in Gui [6] for a linear system. For sim-
plicity, here we only choose the most accurate integration
formula in Chang [24], Gui [6] and Ding [25] to compare
their numerical properties with ours.

At last, we choose some different values of p, q and r
for our proposed method to measure its stability property.
What is more, it has to be emphasized that when p = 1

4 , q =
1, r = 1, the results happen to overlap results of methods in
Gui [6] and Ding [25].

Figure 2 shows the stability property analysis for all the
methods above.

As seen, all the methods satisfy the stability condition
except the central difference method. In addition, when Ω

is inside a range of (0, 2.0), the central difference method
always keeps stable no matter how ξ changes.

5.1.2 Accuracy

Herein, the relative period elongation (PE) and the amplitude
decay (AD) are introduced to further analyze the compu-
tational error of the proposed method [36]. PE is usually
employed to measure period distortion for a step-by-step
integration method, and AD is a measure of numerical dis-
sipation. These two properties are theoretically analyzed to
measure the solution error for motion equation solution. In
this section, we will compare the deformation effects to visu-
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Fig. 2 Stability property: results of spectral radius for several integration methods and proposed explicit integration method
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Fig. 3 Accuracy property: results of PE for several integration methods and proposed explicit integration method

ally show the difference between the implicit method and the
proposed method.

If the equation for an integration algorithm is known, the
eigenvalues for its corresponding amplification matrix can
be expressed in an exponential form similar to Eq. 17 as,

λ1,2 = ε ± σ i (29)

where i = √−1, and AD and PE are defined as,

PE = Ω − Ω̄

Ω̄
(30)

AD = ln
(
σ 2 + ε2

)/
(2Ω̄) (31)

Ω̄ = arctan (|σ/ε|)
√
1 − ξ2

(32)

Wecompute the accuracy property of PEandADformeth-
odsmentioned inSect. 5.1.1which are shown in the following
two figures.

The period elongation result shown in Fig. 3 indicates the
following several points.

(a) Among all the methods, central difference explicit inte-
gration method shows the least period distortion at a
small value ofΩ and ξ . But ifΩ increases, its PE values
dramatically becomes larger and exceeds all the other
methods;

(b) Although the implicit method is prior to most explicit
methods because of its unconditionally stability, its PE
value and growth rate is pretty large;

(c) Great selection for values of p, q and r for our method
should be based on the value of Ω . For example, if Ω

is at a range of rather small value, a selection of p =
1/4, q = 1, r = 1 is the best. When Ω is pretty large,
another selection like p = 1/4, q = 1, r = 3 offers the
least period distortion;

(d) The PE property of Chang [24] method is at a middle
state and that ofGui [6] andDing [25] happen to coincide
to the proposed method with p = 1/4, q = 1, r = 1.
However, our method can switch its PE value by initial-
izing different parameters p, q and r and its calculation
process is much more convenient;
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Fig. 4 Accuracy property: results of AD for several integration methods and proposed explicit integration method

(e) For the proposed method, PE value of a larger ξ is
smaller than that of a smaller ξ . Therefore damping force
can restrain period distortion in some way.

Similarly, here are some conclusions for the AD analysis
in Fig. 4.

(a) The AD values of central difference explicit integra-
tion method and implicit integration method indicate
the extremely large amplitude decay;

(b) AD falls down when values of p, q, r increase. In the
details of such variation, changes of r bring the biggest
influence to growth or reducing rate;

(c) In contrast to Fig. 3, the tendency of AD values first
shows negative growth and then returns to positive
growth with the increasement of Ω;

(d) The AD property of Chang [24] method is also at a
middle state, and that of Gui [6] and Ding [25] is larger;

(e) Opposite to PE results, damping force cannot restrain
amplitude decay.

If only concerned about the numerical properties, the
experiments in this section have proved that the proposed
explicit integration method has the following advantages.

1. Compared to most existing explicit integration method,
our method is unconditionally stable for both linear and
nonlinear systems.

2. The computation procedure for FEM’s dynamic equa-
tions at each time step of our method is much more
intuitive and convenient than other explicit methods pre-
sented recently.

3. There are 3 adjustable parameters in our method which
can be determined according to the current calculation
conditions, thus optimizing computational errors.

Table 2 Integration time and frame rate of FEM using implicit and
proposed method for six models

Model Method Time FPS

Kidney Implicit 157.0 6.3

Proposed 36.0 27.7

Armadillo Implicit 429.0 2.3

Proposed 137.0 7.2

Bunny Implicit 780.0 1.2

Proposed 272.0 3.6

Lung Implicit 1298.0 0.7

Proposed 409.0 2.4

Heart Implicit 1610.0 0.6

Proposed 541.0 1.8

Brain Implicit 1940.0 0.5

Proposed 701.0 1.4

5.2 FEM analysis

5.2.1 Efficiency analysis

To apply the proposed method to FEM, we have employed
six different models to perform our experiments, which are
mentioned before as shown in Table 1.

We compare the integration time and frame rate for FEM
by utilizing implicit method and proposed method in this
section. As mentioned before, while considering values of
frame rate, we here ignore the rendering time because it will
be influenced by model’s complexity. The integration time
and frame rate of the two methods for six models are shown
in Table 2 and Fig. 5.

It is quite clear that the integration time for the proposed
method decreases a lot compared to the implicit method.
More importantly, the computational cost advantage is more
significant if the number of dimensions is larger. Correspon-
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dently, it elevates the frame rate of six models in Table 2 for
the proposed method compared to the implicit method.

Therefore, herein we can draw a conclusion from the
experimental results above that the proposed explicit inte-
gration method can efficiently decrease the computational
cost in integration procedure compared to implicit methods.
However, during FEM simulation process, such advantage
for frame rate is significant for models with medium scales.
With regard to too larger-scale model, such advantage is,
however, unconspicuous resulting from the incremental con-
suming time for integration procedure.

5.2.2 Deformation effects

In this subsection we simply present the deformation effects
of the Kidney model applied with the implicit integration
method and the proposedmethod. Firstly we choose a certain
point on the Kidney model. Then we exert external force on
the point and the direction of the force is to the left which is
also at the X -axis during calculation. The value of external
force for the whole 100 time steps is indicated in Fig. 6,
which is expressed as f in the following. In addition, we set
p = 1/4, q = 1, r = 1 for α in our proposed integration
method.

During simulation, we record the 100-time step displace-
ment values for the force loadedpoint at X -axis of the implicit
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Fig. 7 Displacement at X -axis of the implicit and proposed method
for Kidney model

method and proposed method, respectively. As shown in
Fig. 7, We exhibit the displacement value for the implicit
method and proposed (explicit) method. However, as a result
of numerical errors described in Sect. 5.1.1, the solutions of
the two methods with f are much different. Loaded with f ,
the deformation amplitude of the implicit method is obvi-
ous. On the contrary, it seems no deformation change for the
proposed method under external force f .

We additionally record the proposed method’s deforma-
tion displacement values under external force of 10 f, 100 f,
200 f , as shown in Fig. 7. Apparently, the deformation trends
of the two methods are the same, while the deformation
degrees are different. Compared to the implicit with f , the
proposedmethodwith 100 has themost similar displacement
values.

Actually, in dynamic deformation simulation, the two
methods are both visually realistic although they have dif-
ferent solutions. The accuracy superiority for our method
demonstrated in Sect. 5.1.1 owns its advantages for those
applications with accuracy requirement.

The deformation effects are shown in Fig. 8, where five
figures of 100-time step simulation are selected, respectively,
for the implicit method with f and proposed method with
100 f and 200 f . The deformation effects on the force bear-
ing point are much similar, while on the other parts of the
Kidney model they have differences. On the side aspect, it
demonstrates that during calculation, the solution values of
two methods exist difference, as indicated in Sect. 5.1.2.

6 Conclusion and future work

In this paper, we resort to structural mechanics and math-
ematical analysis to present a novel unconditionally stable
explicit integration method for both linear and nonlinear
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(a)

(b)

(c)

Fig. 8 Deformation effects of the implicit and proposed method for Kidney model. a Deformation effect of the implicit method with f , b
deformation effect of the proposed method with 100 f , c deformation effect of the proposed method with 200 f

FEM to achieve more efficient integration calculation. First
we advocate an explicit integration formulawith three param-
eters. Then by mathematically analyzing the spectral radius
of the dynamic transfer function’s amplification matrix, we
obtain limitations for these three parameters’ values in order
to meet the unconditional stability conditions. Besides, the 3
parameters can be determined according to the current cal-
culation conditions, so as to optimize the calculation errors.
Finally, the accuracy property of the proposedmethod is ana-
lyzed theoretically and verified numerically.

The experimental results indicate that our method is
unconditionally stable for both linear and nonlinear sys-
tems compared tomost existing explicit integrationmethods.
More significantly, the accuracy property of our method is
superior to not only the common explicit and implicit meth-
ods used in FEM but also methods put forward recently.
Then FEM is redescribed using the proposed integration
methods, and it is found that its computation procedure for
dynamic equations at each time step is much more intuitive
and convenient compared to current explicit and implicit
methods. According to real implementation of our method

for FEM, the method can efficiently solve the problem of
huge computational cost in integration procedure because
of its none-factorization of unknown matrices. Superiorities
above enable researchers to realize both efficient and accurate
simulations of FEM. As a side note, the derivation process of
our method is also applicable for other physics-based meth-
ods with dynamic integration procedure.

Currently, our method has observably improved the com-
putational time-consuming in integration procedure com-
pared to implicit methods. Nonetheless, there exist some
shortcomings in our method. For example, generally an
explicit integration method is bad at handling collisions in
graphics field. Therefore, we will concentrate on introducing
and realizing collision detection functions as well as self-
collision caused by elastic deformation in our experiments
to make our explicit method more applicable and flexible.
In addition, in this paper we compare our method with the
implicit Newmark method (frequently used in finite ele-
mentMethod). However, there aremany state-of-art methods
focusing on integration optimization in other deformation
simulation areas like position-based dynamics, as mentioned
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in related work. We should further improve our method to
extend its applicability for more simulation techniques and
compare it with those state-of-art methods in future work.
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