
Multi-Resolution Real-Time Deep Pose-Space Deformation

MIANLUN ZHENG, University of Southern California, USA
JERNEJ BARBIČ, University of Southern California, USA

Fig. 1. Our method permits one to place the hand into any pose in the hand’s ROM and rapidly compute its quality shape, and do so at any (or several)
desirable discrete mesh resolution levels. The training set consists of 3,607 frames of FEM musculoskeletal simulation exercising the ROM of the hand. We
show the ground truth (computed using FEM musculoskeletal simulation; 48 seconds per frame), the output of linear blend skinning (visible artefacts), and our
result. We show two representative hand poses that are not a part of the training set. The four mesh Levels of Detail M0,M1,M2,M3 have 1,133, 4,528,
18,105, 72,414 vertices, respectively. Skinning running times for the four levels are 162, 210, 446, 1,156 microseconds per frame, respectively. Our method
computes the skinning correctives at the four levels (61, 144, 299, 548 microseconds per frame, respectively), plus performs the same skinning. For a small
additional computational cost on top of skinning, we greatly improve the output quality compared to skinning (see images and the error plots), and speedup
the computation by 100,000× compared to FEM simulation. Note that the error does not decrease down to zero on progressive LODs because at each LOD, the
FEM training dataset contains new deformation detail only introduced and resolved by the mesh at this LOD.

Authors’ addresses: Mianlun Zheng, University of Southern California, Los Angeles,
USA, mianlunz@usc.edu; Jernej Barbič, University of Southern California, Los Angeles,
USA, jnb@usc.edu.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
© 2024 Copyright held by the owner/author(s).
0730-0301/2024/12-ART216
https://doi.org/10.1145/3687985

We present a hard-real-time multi-resolution mesh shape deformation tech-
nique for skeleton-driven soft-body characters. Producing mesh deforma-
tions at multiple levels of detail is very important in many applications in
computer graphics. Our work targets applications where themulti-resolution
shapes must be generated at fast speeds (“hard-real-time”, e.g., a few millisec-
onds at most and preferably under 1 millisecond), as commonly needed in
computer games, virtual reality and Metaverse applications. We assume that
the character mesh is driven by a skeleton, and that high-quality character
shapes are available in a set of training poses originating from a high-quality
(slow) rig such as volumetric FEM simulation. Our method combines multi-
resolution analysis, mesh partition of unity, and neural networks, to learn

ACM Trans. Graph., Vol. 43, No. 6, Article 216. Publication date: December 2024.

https://doi.org/10.1145/3687985

216:2 • M. Zheng et al.

the pre-skinning shape deformations in an arbitrary character pose. Com-
bined with linear blend skinning, this makes it possible to reconstruct the
training shapes, as well as interpolate and extrapolate them. Crucially, we
simultaneously achieve this at hard real-time rates and at multiple mesh res-
olution levels. Our technique makes it possible to trade deformation quality
for memory and computation speed, to accommodate the strict requirements
of modern real-time systems. Furthermore, we propose memory layout and
code improvements to boost computation speeds. Previous methods for real-
time approximations of quality shape deformations did not focus on hard
real-time, or did not investigate the multi-resolution aspect of the problem.
Compared to a “naive” approach of separately processing each hierarchical
level of detail, our method offers a substantial memory reduction as well
as computational speedups. It also makes it possible to construct the shape
progressively level by level and interrupt the computation at any time, en-
abling graceful degradation of the deformation detail. We demonstrate our
technique on several examples, including a stylized human character, human
hands, and an inverse-kinematics-driven quadruped animal.

CCS Concepts: • Computing methodologies → Physical simulation.

Additional Key Words and Phrases: real-time, multi-resolution, shape ap-
proximation, FEM, neural networks, skinning

ACM Reference Format:
Mianlun Zheng and Jernej Barbič. 2024. Multi-Resolution Real-Time Deep
Pose-Space Deformation. ACM Trans. Graph. 43, 6, Article 216 (Decem-
ber 2024), 11 pages. https://doi.org/10.1145/3687985

1 INTRODUCTION
There are many techniques to produce high-quality animated shapes
of digital characters, such as production character rigs, FEM soft-
tissue simulation, 4D scanning and manual shot-sculpting. However,
these techniques are time-consuming and often cannot be performed
in real time. In real-time systems, one often animates a 3D mesh
based on the motion of the underlying joint hierarchy. This can be
done to animate humans, animals, plants and even inanimate ob-
jects, and is pervasive in real-time systems such as computer games,
virtual reality, virtual production and the Metaverse. The standard
algorithm for this task (linear blend skinning (LBS) [Jacobson et al.
2014]) is fast and easy to use, but it also produces well-known ar-
tifacts. Those can be corrected with several real-time techniques
such as dual quaternions [Kavan et al. 2008], “delta mush” [Le and
Lewis 2019], helper joints [Kavan et al. 2009] or pose-space defor-
mation [Lewis et al. 2000].

These techniques, however, do not address a critically important
component of real-time systems, namely the need for multiple lev-
els of detail. In a typical interactive application, important assets
are represented with multiple meshes, with a progressive number
of vertices and triangles (“Levels of Detail”, LOD). LODs are very
common, for example, in popular game engines such as Unreal and
Unity. They are necessary to keep the real-time performance suf-
ficiently high, so that a character that is far from the camera can
be displayed at a lower resolution. Similarly, if multiple characters
are in the foreground, it is useful to display them at a decreased
resolution to maintain the required update frame rates. In our work,
we give a multi-resolution shape deformation technique that, given
any character pose, produces the output shape at any (or several)
desired level(s) of detail (Figure 1), based on any suitable shape
deformation training data; and does so at hard real-time rates.

Our technique is grounded in multi-resolution methods exten-
sively investigated in computer graphics [Boier-Martin et al. 2005].
It is similar in spirit to Pose-Space Deformation [Lewis et al. 2000]
and Fast Deep Deformations [Bailey et al. 2018] in that we also
generate pose-dependent pre-skinning correctives to the neutral
shape using neural networks, to which linear blend skinning is ap-
plied to produce the output shape. However, our key distinction
is that we give an algorithm to do so at multiple LODs, in an in-
terruptible manner, and in a manner whereby output accuracy can
be controled. Our first contribution is to define neural networks so
that they predict the shape deformation at some LOD and in some
spatially localized region, relative to the shape deformation already
determined on coarser levels. We observe that if this is combined
with the mesh prolongation operator, the neural networks at some
LOD then only need to resolve the shape deformation detail arising
at this resolution level, as opposed to re-creating the entire shape
deformation from scratch; this leads to large memory savings. Next,
we contribute the observation that the spatially localized regions
can be defined automatically using the prolongation operator [Liu
et al. 2021], in a manner intertwined with the mesh simplification
algorithm, avoiding tedious manual selection of regions. The dif-
ferent mesh LODs do not need to be subdivisions of each other.
We use quadric error mesh simplification [Garland and Heckbert
1997] to create our mesh LODs, but our technique is suitable for
other mesh hierarchies, as long as they permit a definition of pro-
longation and restriction operators [Liu et al. 2021], e.g., progressive
meshes [Hoppe 1996], or mesh subdivision [James and Pai 2003].
The LOD hierarchy and all other necessary datastructures are

created during pre-processing. Analogous to how the prolongation
operator defines the influence of a coarse vertex to the finer level, we
use the prolongation operator to define the spatial influence weights
for each neural network. Then at runtime, one can select any par-
ticular LOD (or several, or even all), and our technique produces
quality pre-skinning deformations at those LODs, at hard real-time
rates. An example of such an application are computer games, where
different characters may be rendered at different LODs only known
at runtime, based on character importance, distance to camera and
other metrics [Funkhouser and Séquin 1993]. They can also be ren-
dered at several LODs at the same frame in case of a multi-player
game where multiple cameras observe the same character from dif-
ferent distances; or at two LODs when blending two LODs to avoid
popping. Other potential applications include progressive transmis-
sion of character deformation over a network, or multi-resolution
contact handling with graceful degradation [Otaduy 2004].
Our technique is fast; producing the complete LOD hierarchy

of correctives for meshes with over 70,000 vertices (Figures 1, 2)
in approximately 1 millisecond when using multiple cores (with
cold caches), and in a few milliseconds when using a single core.
We are not aware of any other work that has investigated how to
approximate given character shape training data in hard real time at
multiple levels of detail. A naive solution would be to simply treat
each LOD as a separate problem and train pre-skinning correctives
separately for each mesh LOD, e.g., using Bailey’s method [Bailey
et al. 2018]. We compare to such a method and demonstrate that
our method greatly reduces the memory requirement to store the

ACM Trans. Graph., Vol. 43, No. 6, Article 216. Publication date: December 2024.

https://doi.org/10.1145/3687985

Multi-Resolution Real-Time Deep Pose-Space Deformation • 216:3

Fig. 2. Mesh detail on the hand. Our method better captures the ground
truth than skinning.

neural networks and other datastructures needed for runtime eval-
uation. Note that a small memory footprint is critically important
for interactive applications such as games, whereby memory needs
to be shared with the other game assets. Our training times are
also substantially reduced, thanks to a lesser number of required
neural networks. Our method maintains comparable or faster run-
time speeds to non-hierarchical methods, depending on how many
LODs are required at a particular frame at runtime. These results are
possible thanks to the incremental nature of our multi-resolution
neural networks that only need to add incremental deformation
detail at each LOD. The “world” of real-time computing in the mi-
crosecond regime is very different to the more typical real-time
computer animation applications with running times in tens of mil-
liseconds or more. For example, for a mesh with 70,000 vertices,
it takes 50 microseconds just to write a single already computed
mesh shape to memory, let alone do any deformation computation.
Therefore, although our core contribution is algorithmic, we also
discuss various code and memory optimizations suitable for such a
fast computational regime.

2 RELATED WORK
Real-time shape approximation. Starting from a set of rig poses

and matching shapes as input, there are several learning-based
methods to reproduce and interpolate high-quality static shape de-
formations in real time. One can learn pre-skinning residuals using
Radial Basis Functions (RBFs) [Lewis et al. 2000], or further process
the residuals using PCA [Kry et al. 2002]. The latter was applied
to hand deformation with training obtained from FEM, similar to
our hand example but using a soft-tissue FEM pipeline [McAdams
et al. 2011] as opposed to musculoskeletal anatomy-based simula-
tion. Bailey et al. [Bailey 2020; Bailey et al. 2018] used both PCA
and deep neural networks to learn real-time film-quality character
mesh deformations originating from production rigs. Similarly for
facial animation, Song et al. [Song et al. 2020] used joint transforms
as input and learned localized character shapes in differential co-
ordinates. These methods did not pursue multi-resolution shape
deformation. In follow-up work, Bailey et al. [Bailey et al. 2020]
presented a method that uses convolutional neural networks for
approximating facial mesh deformations. While this method em-
ployed a 2-level coarse/fine deformation structure, their construc-
tion uses texture mapping, and is specific to facial deformation

(e.g., to accommodate wrinkles). Our method is designed for gen-
eral meshes and generic multi-level mesh simplifications schemes;
we use 4 LODs in our examples. Multi-resolution hierarchies are
commonly used in computer graphics, see, e.g., the survey of Boier-
Martin et al. [Boier-Martin et al. 2005]. They can be combined with
FEM simulation [Capell et al. 2002; Debunne et al. 2001; Grinspun
et al. 2002; Zhang et al. 2022], and form the core of the multigrid
method [Otaduy et al. 2007; Zhu et al. 2010]. These methods are
typically not designed for hard real-time systems, however. For fast
evaluation in games, progressive upscaling has been previously ex-
plored for cloth simulation [Kavan et al. 2011]; in our work, we
drive character skins using a skeleton hierarchy.

Learning physics. Numerous studies have demonstrated that learning-
based approaches are effective in addressing the computational
challenges of physics-based simulation methods, particularly in
subspace learning and modeling. Fulton et al. [Fulton et al. 2019]
utilized an autoencoder neural network to generate nonlinear re-
duced spaces for deformation dynamics, and Holder et al. [Holden
et al. 2019] used a neural network to learn the motion and interac-
tion of deformable objects in a subspace. Badias et al. [Badías et al.
2020] applied model reduction to contact solutions in a reduced
space, enabling real-time interaction between virtual and physical
objects. To achieve fast and detailed contact-driven deformation,
Casas et al. [Casas et al. 2021] integrated nonlinear learning-based
corrections with existing linear handle-based subspace formulations,
whereas Romero et al. [Romero et al. 2022] machine-learned contact
deformations in a contact-centric manner and integrated them with
subspace dynamics. Unlike the above methods that benefit from
the subspace, the light-weight NNWarp [Luo et al. 2018] corrects
a linear displacement by predicting a per-vertex nonlinear incre-
mental displacement, allowing real-time simulation of large models.
Statistical and learning approaches have been used for a long time
to build approximations of real-world scanned deformations, for
example [Loper et al. 2015] and its many follow-up works. These
methods have however generally not been designed with real-time
or multi-resolution performance in mind. There are also researchers
working on producing character soft-tissue dynamics using neural
networks [Habermann et al. 2021; Romero et al. 2020; Santesteban
et al. 2020; Zheng et al. 2021]. Simulating clothing using deep learn-
ing is another well-studied field [Bertiche et al. 2021; Chentanez et al.
2020; Santesteban et al. 2019]. As discussed above, the application of
machine learning to predict shape deformation has been extensively
researched. Few methods have discussed real-time performance,
however. Moreover, previous methods did not address the need to
simultaneously support multiple LODs and hard real-time deforma-
tion. In our work, we give a method that computes the shape at any
level(s) of detail at hard real-time rates, and does so intertwined with
standard widely used mesh level-of-detail algorithms, e.g., quadric
error surfaces [Garland and Heckbert 1997].

Learning the rig. Researchers have also explored learning-based
methods to produce a LBS rig from mesh animations [Le and Deng
2014], or avoid the standard LBS shortcomings. Liu et al. [Liu et al.
2019] presented an end-to-end deep graph convolution network to
automatically compute skin weights for skeleton-based deformation

ACM Trans. Graph., Vol. 43, No. 6, Article 216. Publication date: December 2024.

216:4 • M. Zheng et al.

Fig. 3. Multi-resolution mesh hierarchy and the upsampling and
coarsening operators. Level 0 is only used for defining our “basis functions”
for shape deformation (Section 5).

of production characters. Deng et al. [2020] computed neural indica-
tor functions to efficiently represent articulated deformable objects,
and RigNet [Xu et al. 2020] utilized a deep architecture to predict
skeletons and surface skin weights from input 3D character meshes.
Similarly, the work [Li et al. 2021] developed a neural network ca-
pable of rigging an input character mesh, along with neural blend
shapes to improve the deformation quality. The above methods
specifically focused on rigging and skinning weights, whereas we
investigate LODmesh deformation at hard real-time rates. Our train-
ing data comes from physically based simulation and incorporates
volume preservation and contact resolution.

3 OVERVIEW
We assume that we are given a neutral-pose mesh at multiple LODs
M1,M2, . . . ,M𝑟 , where each M𝑖 is a triangle mesh, and level 1
is the coarsest and 𝑟 is the finest. Let 𝑛𝑖 be the number of ver-
tices in M𝑖 . We assume that the LODs are generated using a mesh
simplification algorithm that can define the prolongation and restric-
tion operators between adjacent levels, for example, as described
in [Liu et al. 2021]. Thus, we first create our restriction (coarsening)
C𝑖 ∈ R3𝑛𝑖−1×3𝑛𝑖 and prolongation (upsampling) U𝑖 ∈ R3𝑛𝑖+1×3𝑛𝑖
operators (Figure 3), following [Liu et al. 2021]. Here, C𝑖 coarsens
any scalar field from M𝑖 to M𝑖−1, and U𝑖 upsamples any scalar
field from M𝑖 to M𝑖+1; we have C𝑖+1U𝑖 = 1M𝑖

. We also assume
that we are provided with a joint hierarchy and skinning weights
on the finest level M𝑟 . We use the coarsening operators to coarsen
the skinning weights fromM𝑟 to all coarser LODs.

We assume that we are given training data (𝑝 𝑗 , 𝑢 𝑗
𝑟) consisting of

𝑁 frames, 𝑗 = 1, . . . , 𝑁 , whereby 𝑝 𝑗 ∈ R𝑃 is a pose, and 𝑢 𝑗
𝑟 ∈ R3𝑛𝑟

gives the displacements of all vertices away from the neutral-pose
meshM𝑟 . In our examples, the training shapes come from two types
of volumetric FEM rigs, namely soft-tissues surrounding volumetric
bones [McAdams et al. 2011] and musculoskeletal FEM rigs [Zheng
et al. 2022]. However, our method makes no explicit assumption on
the source of quality mesh deformations, and could in principle be
applied, e.g., even to 4D optical scans followed by mesh registration.
The pose vector 𝑝 𝑗 contains the joint angles of the joint hierarchy,
represented using Euler angles.

Fig. 4. Multi-resolution pose-space deformation. Pre-skinning displace-
ments are constructed progressively, level by level, using a set of spatially
localized neural networks at each LOD. The mask exists because only a
part of the pose enters the neural network, determined using perturbation
analysis on each joint as explained in [Bailey et al. 2018].

We transform the training shapes into the pre-skinning space
using inverse skinning, and then use these shapes to train level-
specific and spatially localized neural networks (Section 4). This is
done incrementally so that the neural networks at each level only
add the deformation detail introduced at that level (Figure 4). At
runtime, given a pose 𝑝, the networks then produce progressive pre-
skinning displacements on meshes M1,M2, . . . ,M𝑟 until either
the computation is terminated, or the last level has been computed.
Finally, by applying skinning, we compute the output shape for pose
𝑝. Our output shapes reasonably re-create the training data in the
training poses, and interpolate and extrapolate it to unseen poses.
Of course, outside of the training ROM, our method under-performs
(Figure 12).

4 MULTI-RESOLUTION POSE-SPACE DEFORMATION
As is commonly done [Bailey et al. 2018; Kry et al. 2002; Lewis et al.
2000], our method operates completely on pre-skinning displace-
ments. At runtime, it constructs pre-skinning displacements in a
given pose; and skinning then only transforms those displacements
into the world-space. Given training poses 𝑝 𝑗 and vertex deforma-
tions 𝑢 𝑗

𝑟 at the finest mesh level of detail M𝑟 , for 𝑗 = 1, . . . , 𝑁 , we
first invert skinning to convert them to the pre-skinning space, pro-
ducing pre-skinning displacements 𝑋 𝑗

𝑟 . This is done by computing
the skinning transformation (consisting of a 3x3 linear matrix and a
translation) at each vertex, and 𝑋 𝑗

𝑟 is then obtained by applying its
inverse to the world-coordinate training vertex position, followed by
subtraction of the undeformed vertex position.We then coarsen each
𝑋

𝑗
𝑟 to each level of our hierarchy, using the coarsening operators

C𝑖 , producing pre-skinning displacements 𝑋 𝑗
𝑖
, for levels 𝑖 = 𝑟, . . . , 1.

At each level 𝑖, our goal is to generate a deformation function 𝐹𝑖
that maps pose 𝑝 to a pre-skinning displacement 𝑋 on M𝑖 . This
is not done directly by using 𝑋 𝑗

𝑖
as the training data, because this

would not leverage the work already done at coarser LODs. Instead,
we train our 𝐹𝑖 by leveraging the already trained 𝐹𝑖−1, i.e., we train
deformation functions in the order 𝐹1, 𝐹2, . . . , 𝐹𝑟 , using “induction”.

ACM Trans. Graph., Vol. 43, No. 6, Article 216. Publication date: December 2024.

Multi-Resolution Real-Time Deep Pose-Space Deformation • 216:5

Fig. 5. Hand shape computation and real-time rendering at multiple
LODs. Phong shading + texture mapping, dynamic normals. Observe the
increasing geometric detail seen in shading as LOD is increased. At lower
LODs, geometric detail is lost and only texture mapping remains.

Suppose 𝐹𝑖−1 is already trained and we now need to train 𝐹𝑖 . Given
a training pose 𝑝 𝑗 , we first evaluate 𝐹𝑖−1 (𝑝 𝑗), upsample it to level 𝑖
using the upsampling operator, and subtract it from 𝑋

𝑗
𝑖
,

𝑌
𝑗
𝑖
= 𝑋

𝑗
𝑖
−U𝑖𝐹𝑖−1 (𝑝 𝑗). (1)

Note that U𝑖𝐹𝑖−1 (𝑝 𝑗) is the predicted pre-skinning displacement,
on the mesh of level 𝑖, as predicted by the coarser levels 1, . . . , 𝑖 − 1,
and 𝑌

𝑗
𝑖
is the “residual” deformation detail added on level 𝑖 . It is

this residual deformation detail that is approximated by the neural
networks at level 𝑖 . Specifically, we use neural networks to construct
a deformation function𝑁𝑖 that maps an arbitrary pose 𝑝 to a residual
𝑌𝑖 . We then compute our pre-skinning displacements at level 𝑖 as

𝐹𝑖 (𝑝) = U𝑖𝐹𝑖−1 (𝑝) + 𝑁𝑖 (𝑝) . (2)

The “induction” starts (𝑖 = 1) without any previous level; i.e., 𝑁1 (𝑝)
is trained directly using the training shapes 𝑋 𝑗

1 .
At runtime, given a new pose 𝑝, we then first evaluate 𝐹1 (𝑝) =

𝑁1 (𝑝), and then use Equation 2 to compute 𝐹2 (𝑝), 𝐹3 (𝑝), This
progressively reconstructs the pre-skinning shape at finer and finer
LODs. This process is interruptible, permitting us to trade the out-
put mesh quality for speed, and continues until the desired LOD is
reached. Finally, we apply skinning (at any required level) to com-
pute the output character shape. Figure 5 demonstrates this runtime
process, combined with real-time rendering.

5 NEURAL DEFORMATION FUNCTIONS
We now describe how we create our deformation functions 𝑁𝑖 at
each LOD level 𝑖 . We do this by training a set of spatially-localized
neural networks, using the concept of a mesh partition of unity.
A partition of unity onM𝑖 is a set of smooth non-negative scalar
functions 𝜓𝑘

𝑖
: M𝑖 → R that add to 1 at each vertex,

∑
𝑘 𝜓

𝑘
𝑖

=

1M𝑖
≡ [1, . . . , 1]𝑇 (1 repeated 𝑛𝑖 times). Partitions of unity are of

course not new, see, e.g. [Babuška et al. 1994; Ohtake et al. 2003];
our contribution is to combine them with neural networks and a

Fig. 6. Multi-resolution shape function.We show a representative shape
function at several LOD levels.

Fig. 7. A few basis functions on M4 (not the complete set).

multi-resolution scheme. We first create a partition of unity on the
coarsest resolution level, as follows. First, observe that column 𝑘

of the upsampling operatorU𝑖 gives the “influence“ of vertex 𝑘 of
M𝑖 to vertices onM𝑖+1 . This column can be seen as a non-negative
scalar field defined on vertices of M𝑖+1; we will denote it by U (𝑘)

𝑖
.

Observe that the field is localized because the influence of each
vertex ofM𝑖 onto meshM𝑖+1 is spatially limited. To partition the
unity onM1, we execute the mesh simplification algorithm onM1,
producing an even coarser LOD M0 . This LOD will not actually be
constructed at runtime, and will not have any neural networks; we
will only use it to define our partition of unity. Namely, our partition
of unity on M1 consists of 𝑛0 scalar fields 𝜓𝑘

1 = U (𝑘)
0 ∈ R3𝑛1 ,

where 𝑘 = 1, . . . 𝑛0 . We then prolong each scalar function 𝜓𝑘
1 to

all the resolution levelsM2, . . . ,M𝑟 , using upsampling operators
U1, . . . ,U𝑟−1 (Figure 6)

𝜓𝑘
𝑖 = U𝑖−1𝜓𝑘

𝑖−1 ∈ R3𝑛𝑖 , for 𝑘 = 1, . . . , 𝑛0, and 𝑖 = 2, . . . , 𝑟 . (3)

Partition of unity proof. We now prove that the resulting functions
𝜓𝑘
𝑖
are still a partition of unity at each level; we call them “basis

functions” (of each level) because they define a linearly independent
basis of a subspace of scalar function on that level (Figure 7). We
proceed by induction. Suppose 𝜓𝑘

𝑖
are a partition of unity of M𝑖 ,

i.e.,
∑𝑛0
𝑘=1𝜓

𝑘
𝑖
= [1 . . . 1]𝑇 (𝑛𝑖 1s). Then,

𝑛0∑︁
𝑘=1

𝜓𝑘
𝑖+1 =

𝑛0∑︁
𝑘=1

U𝑖𝜓
𝑘
𝑖 = U𝑖

𝑛0∑︁
𝑘=1

𝜓𝑘
𝑖 = (4)

= U𝑖 [1 . . . 1]𝑇 (𝑛𝑖 1s) = [1 . . . 1]𝑇 (𝑛𝑖+1 1s). (5)

Last equality holds because each row of U𝑖 sums to 1, for all 𝑖; this
is because the sum of influences of vertices of M𝑖 to any particular
vertex ofM𝑖+1 must be 1. By the same argument,𝜓𝑘

1 (columns of
U0) are also a partition of unity (base induction case). ■

ACM Trans. Graph., Vol. 43, No. 6, Article 216. Publication date: December 2024.

216:6 • M. Zheng et al.

Spatially-localized neural networks. At each LOD level 𝑖 = 1, . . . 𝑟 ,
we use the basis functions𝜓𝑘

𝑖
, 𝑘 = 1, . . . , 𝑛0, to define 𝑛0 spatially-

localized neural networks of level 𝑖; each neural network predicts
the residual in the spatially localized region of the support of𝜓𝑘

𝑖
.

The construction below is repeated separately for each 𝑘 = 1, . . . , 𝑛0 .
We start with the residuals 𝑌 𝑗

𝑖
∈ R3𝑛𝑖 (Equation 1), for 𝑗 = 1, . . . , 𝑁 .

We then form the training shapes 𝑌 𝑗,𝑘
𝑖

= 𝜓𝑘
𝑖
𝑌
𝑗
𝑖
∈ R3𝑛𝑖 , where we

have multiplied the residual of every vertex with the value of 𝜓𝑘
𝑖

at that vertex; this localizes the residuals to the support of𝜓𝑘
𝑖
. We

then perform dimensional reduction on 𝑌
𝑗,𝑘
𝑖

using PCA along the
index 𝑗 [Bailey et al. 2018; Kry et al. 2002], expressing[

𝑌
1,𝑘
𝑖

𝑌
2,𝑘
𝑖

. . . 𝑌
𝑁,𝑘
𝑖

]
≈ 𝑉𝑘

𝑖

[
𝑧
1,𝑘
𝑖

𝑧
2,𝑘
𝑖

. . . 𝑧
𝑁,𝑘
𝑖

]
, (6)

where𝑉𝑘
𝑖

∈ R3𝑛𝑖×𝑑𝑖 is the PCA basis matrix, 𝑧 𝑗,𝑘
𝑖

∈ R𝑑𝑘𝑖 , and 𝑑𝑘
𝑖
≥ 0

is the retained dimension of region 𝑘 on level 𝑖 (determined as
explained in the next paragraph). Here, in notation, we indicated
that the number of rows of 𝑉𝑘

𝑖
is 3𝑛𝑖 , i.e., three DOFs for each

vertex of M𝑖 , but of course due to the finite support of 𝜓𝑘
𝑖
, many

(most) rows of 𝑉𝑘
𝑖

are zero, and this is exploited in our work to
reduce memory storage. Next, we learn a neural network N𝑘

𝑖
that

approximates the function 𝑝 ↦→ 𝑧𝑘
𝑖
.We use a fully connected neural

network with two hidden layers, with the tanh activation function.
We experimented with various sizes of the two hidden layers and
settled on 5·max(𝑃,𝑑𝑘

𝑖
),where 𝑃 is the pose dimension. As explained

in [Bailey et al. 2018], we also perform per-neural network culling
of input dimensions in 𝑝 using perturbation analysis on each joint.
Finally, we construct our deformation function 𝑁𝑖 (Equation 2) as

𝑁𝑖 (𝑝) =
𝑛0∑︁
𝑘=1

𝑉𝑘
𝑖 N

𝑘
𝑖 (𝑝). (7)

Selecting the number of retained dimensions. The value 𝑑𝑘
𝑖
is de-

termined automatically by specifying a target average per-vertex
per-training-frame PCA reconstruction error 𝜖,

1
𝑛𝑖𝑁

 [𝑌 1,𝑘
𝑖

. . . 𝑌
𝑁,𝑘
𝑖

]
−𝑉𝑘

𝑖

[
𝑧
1,𝑘
𝑖

. . . 𝑧
𝑁,𝑘
𝑖

] 2
𝐹
= (8)

=
1

𝑛𝑖𝑁

min(3𝑛𝑖 ,𝑁)∑︁
ℓ=𝑑𝑘

𝑖
+1

𝜎2ℓ < 𝜖2, (9)

where 𝜎ℓ are the singular values of the LHS matrix in Equation 6.
We use a uniform global threshold 𝜖 for all regions and all levels;
this means that the number of retained dimensions will vary across
the model based on the deformation complexity; this ensures that
all regions on the model resolve deformations to approximately
the same quality level. By adjusting the parameter 𝜖, one can trade
the reconstruction accuracy for runtime reconstruction speed and
required memory (Figure 8). Note that, depending on 𝜖, some 𝑑𝑘

𝑖
may be zero; i.e., the 𝐿2-norm of training residuals in a region is
very small relative to the requested accuracy 𝜖. In such a case, we
do not train a neural network, but instead discard (cull) this region
altogether. Culling enables us to localize computation to areas with
the largest displacements.

Fig. 8. Trading approximation accuracy for speed and memory, by
adjusting the 𝜖 threshold. Note that the 𝑦-axis shows the testing error, i.e.,
difference to the ground truth on motions unseen during training. All the
datapoints on the same curve were obtained by keeping the number of basis
functions (𝑛0) constant and varying 𝜖. Hand example (Figure 1). Timings
correspond to evaluating all four resolution levels.

Table 1. Computation time to reconstruct one shape at runtime. Megan
example (Figure 9). All times are inmicroseconds, and averaged over the
entire testing animation (521 frames). Intel Xeon(R) W-3275 CPU, 56 cores
@ 2.5 GHz (only 28 effectively utilized), with 196 GB RAM. Each cell reports
two times in the format A/B, to compare our work (time “A”) to simply using
prior work [Bailey et al. 2018] to separately process each level (time “B”).
Our times correspond to the incremental time at each level; the total time
to construct all levels is 697 microseconds. “NN time” is the time to evaluate
neural networks. #NNs is the number of non-culled neural networks at
each level, out of the 𝑛0 = 100 available networks. Observe that, due to the
incremental construction of deformation detail, our method has significantly
fewer NNs at deeper levels than if separately processing each level.

LOD #vtx #NNs NN time 𝑢 = 𝑈𝑞 upsampling total

1 1,296 70 / 70 50 / 50 16 / 16 18 / 18 84 / 84
2 4,815 65 / 75 48 / 101 35 / 44 34 / 31 117 / 176
3 18,840 45 / 73 34 / 120 60 / 126 64 / 65 158 / 311
4 74,742 49 / 78 40 / 114 142 / 824 156 / 125 338 / 1063

Table 2. Memory to reconstruct one shape at runtime. Megan example
(Figure 9). Same experiment and same A/B comparison as in Table 1. “NN
mem” is the memory to store all the trained neural network coefficients. All
values are in MegaBytes. For our method, we give the incremental memory
needed at each level; our total memory for all levels is 79.7 MB. Our memory
consumption is much smaller than for the compared method that separately
processes each level.

LOD #vtx #NNs NNmem 𝑢 = 𝑈𝑞 upsampling total

1 1,296 70 / 70 3.4 / 3.4 1.1 / 1.1 0 / 0 4.5 / 4.5
2 4,815 65 / 75 3.5 / 6.1 6.2 / 8.8 0.3 / 0 10.0 / 14.9
3 18,840 45 / 73 1.7 / 6.8 13.8 / 35.0 1.1 / 0 16.6 / 41.8
4 74,742 49 / 78 0.6 / 7.0 43.5 / 201 4.5 / 0 48.6 / 208

6 RUN-TIME CODE AND MEMORY CONSIDERATIONS
Our work aims at hard-real-time animation suitable for computer
games and VR systems, whereby the total computational budget to
deform a character with 70,000 vertices is at most a few milliseconds.
Under such constraints, it is necessary to employ certain code opti-
mizations, as described next. We are not aware of any prior work

ACM Trans. Graph., Vol. 43, No. 6, Article 216. Publication date: December 2024.

Multi-Resolution Real-Time Deep Pose-Space Deformation • 216:7

Fig. 9. Hard real-time LOD character deformation. The ground truth of this character was computed using FEM deformable simulation, including
self-collision handling. Our real-time system is able to regenerate high-quality shapes, as well as interpolate them to new poses. Observe good-quality shape
deformation near the characters’ joints.

that has discussed such speed optimizations in the context of mesh
LOD deformation computations for hard-real-time systems.

At runtime, we evaluate our neural networks using our own code;
we do not use standard libraries such as PyTorch [Paszke et al. 2019].
We first used the C/C++ distribution of libtorch at runtime, but found
it approximately 5-10x slower than our code. This is not surprising
as such code is designed for general neural network applications
as opposed to real-time systems. In time-critical sections, our code
prefers C and avoids C++, and in particular, we do not use the
algorithms from the Standard Template Library (STL). We avoid all
dynamic memory allocations (no malloc), as these would otherwise
drastically slow down performance. We allocate all memory for our
runtime datastructures as one contiguous block. All the runtime
data for each spatial region at each hierarchical level (trained neural
network weights, modal matrices) is stored contiguously in memory,
to improve read cache coherence.
As is commonly the case in high-performance applications, our

runtime code is memory-bound, i.e., it takes significantly more time
to read neural network and upsampling weights from memory, than
to actually use them for computation. The largest computational
cost is incurred in upsampling, and therefore we optimize memory
reads of upsampling weights by storing them in 16-bit precision.
Specifically, each vertex (on any LOD level 𝑖) has three non-negative

weights𝑤1,𝑤2,𝑤3 that sum to 1; they are weights of vertices of a
level 𝑖 − 1 triangle “driving” this vertex. We only store and read
𝑤1 and𝑤2 from memory; they are represented as 16-bit unsigned
integers 𝑖1 and 𝑖2, packed into the lowest and highest 16 bits of an
32-bit unsigned integer, respectively. At runtime, after reading 𝑖1
and 𝑖2 frommemory, we can access𝑤1,𝑤2,𝑤3 by “hacking” the IEEE
754 single-precision floating point format. Namely, we exploit the
fact that a single-precision FP number in the format 1.binarydigits
(1 and binary digits after the decimal point) conveniently stores the
binarydigits into the 23-bit mantissa. Note that ALU and floating
point operations are very cheap compared to memory reads.

// Read 32-bits from memory, containing two 16-bit unsigned ints.
unsigned int packedWeights = memoryArray[...]; // read 32 bits
// Create FP representations of the two 16-bit unsigned integers,
// by interpreting the low and high 16-bits as FP mantissas.
unsigned int w1i = ((packedWeights & 65535) << 7) | (127 << 23);
unsigned int w2i =

(((packedWeights >> 16) & 65535) << 7) | (127 << 23);
// View as float. Only writing to local variables w1 and w2
// stored in registers. No memory write occurs here.
float w1 = *(float*) &w1i; float w2 = *(float*) &w2i;
// Now, use w1 - 1.0f and w2 - 1.0f, and (3.0f - w1 - w2) to
// access barycentric weights w1, w2, w3.

ACM Trans. Graph., Vol. 43, No. 6, Article 216. Publication date: December 2024.

216:8 • M. Zheng et al.

Fig. 10. Shape changes are visible even under coarse LODs. The shown
sizes of hands at LOD 1 (coarsest LOD) and LOD 2 (second coarsest LOD)
are correctly proportional to their differences to the camera. The coarsest
LOD 1 is activated when the hand is far away from camera. Even in this
case, there are silhouette differences between skinning and our method.

If a weight is 1.0, we re-order the weights so that 𝑤3 = 1, and
therefore 𝑤1 = 𝑤2 = 0. This is necessary because the above rep-
resentation cannot store 1.0, but only values slightly smaller than
1: representable values range from 0 to 1 − 216 . Our approach ac-
celerated upsampling by approximately 35% in our examples, at a
negligible loss of runtime vertex position precision. Our upsampling
speedup is applicable generally to any method that stores vertex
quantities and needs to quickly upsample them using a triangle
mesh LOD such as [Liu et al. 2021]. For fairness, we apply our code
and memory optimizations to all the compared methods.

7 RESULTS
We demonstrate our method on several examples from computer
animation practice, including human hands (Figure 1), a full-body
cartoon character (Figure 9), and a four-legged animal (an elephant)
whose skeleton is driven using IK (Figure 11).

Hands. Our training data was obtained from the project [Zheng
et al. 2022]; it uses anatomically based FEM simulation with fat,
muscles and bones. The linear blend skinning skeleton and weights
were modeled and computed in Maya. Because our goal is real-time
shape deformation in interactive applications (games, VR, Meta-
verse), we incorporated our method into an OpenGL real-time appli-
cation (GLUT window manager), together with real-time skinning,
dynamic vertex normals and real-time rendering (Phong shading)
(Figure 5). Real-time dynamic normals are required in such appli-
cations to properly visualize the deformed shape, both under skin-
ning only, or skinning plus our correctives. Therefore we include
the time to compute dynamic normals in our “skinning” timings.
Furthermore, hard-real-time application are particularly challeng-
ing when running times drop below 1 millisecond because cache
misses become extremely expensive. Namely, one crucial aspect
is whether the “runtime datastructures” (skinning weights, PCA
basis matrices, neural network coefficients, upsampling weights)

Fig. 11. Hard-real-time LOD quadruped. Top row: Two representative
training poses generated using IK, with the skinned shape. Next row: the
training shapes for the above two training poses (FEM deformable sim-
ulation with self-collision handling). Next row: Representative frame of
our output, shown at LODs 1 and 4. Our real-time method produces high-
quality shapes for animations that have not been seen during training, such
as this walk cycle. Bottom row: zoom of the skinned shape (625 microsec per
frame), FEM ground truth (29.7 seconds per frame), and our shape (1,142
microseconds per frame including skinning; 26,000× faster than FEM). All
performance numbers are at LOD 4 (33,346 vertices). Observe that, unlike
skinning, our method resolves self-collisions near the elephant’s hips.

are present in the memory caches (“hot cache”), or not/were evicted
(“cold cache”). The typical situation in a real-time rendering system
is a cold cache because the real-time renderer keeps evicting the
runtime datastructures from the caches at each rendering frame;
this effect can cause even a 2x slowdown of performance when in
the hard-real-time regime. Cold-cache performance drop relative
to the otherwise reported hot cache performance in our paper, is
visible in our real-time video screen captures. Memory storage and
consequently runtime performance (due to better caching) could be
improved using techniques typically done in game industry such as
by using lower-level APIs (e.g., Vulkan or Metal), or directly access-
ing the graphics drivers and window managers of each platform;
we consider such optimizations beyond the scope of our academic
work. In Figure 10, we demonstrate that our method brings benefits

ACM Trans. Graph., Vol. 43, No. 6, Article 216. Publication date: December 2024.

Multi-Resolution Real-Time Deep Pose-Space Deformation • 216:9

Fig. 12. Limitation of our method. Our training data does not contain
poses where the elephant stands on its last feet, or where the front ankle is
bent severely. Our method fails in such poses.

even when objects are far away from the camera, and not just when
they are right in front of the camera (see also our Main Video). This
establishes that it is useful to compute the correctives even at coarse
LODs, as opposed to merely use skinning.

Cartoon character. Our cartoon character (Megan) comes from
the Mixamo project [Mixamo 2024]. Mixamo provides an animated
skeleton and skinning weights for the rendering mesh; we remeshed
it in Maya to increase the resolution, and resampled the Mixamo
skinningweights onto this newmesh, which then serves as our finest
LOD4 mesh (the “skin”). Megan is simulated using FEM constrained
dynamics similarly to [McAdams et al. 2011]. Specifically, we first
create a “shrunken skin”, by computing the signed distance field 𝐷
against the character polygon soup geometry [Xu and Barbič 2014].
We then use isosurface meshing [Boissonnat and Oudot 2005] to
create a quality surface triangle mesh of the skin (𝐷 = 0), and
the shrunken skin (𝐷 = −𝑑, where 𝑑 > 0 is the “fat” thickness).
Finally, we tet-mesh the volume between the shrunken skin and the
skin [Hang Si 2011], obtaining FEM mesh for the body “fat”. The
“shrunken skin” is then equipped with skinning weights using Maya,
and animated with the Mixamo animations. Our “fat” is constrained
to this animated “shrunken skin”, but is otherwise free to deform,
subject to collisions and self-collisions. This gives us good quality
skin deformations and contact at the character joints (Figure 9). The
largest pre-skinning displacements occur near the joints, and are
captured by our multi-resolution neural deformation functions 𝐹𝑖 .

IK example. In our third example, we equipped a quadruped’s (an
elephant) skeleton with inverse kinematics. We drag (in real-time)
IK handles to generate representative training skeleton poses; we
record every mouse move and this resulted in 3646 training poses.
In this stage, the elephant’s shape is deformed using LBS, produc-
ing the expected visual artefacts, i.e., severe self-collisions at the
hip joints. We created the skinning weights in Maya using Maya’s
“HeatMap” method, followed by manual improvements and smooth-
ing using the popular “brSmoothWeights” Maya plugin. Next, we
use FEM simulation (as described above with the “Megan” exam-
ple [McAdams et al. 2011]) to compute correct FEM training shapes
for the 3646 training poses, incorporating volume preservation and
skin self-collision handling. Finally, we train our system using these
training poses and FEM shapes. The end result is that we can then ap-
ply our trained method onto new motions (unseen during training)
in hard real-time, such as a complete elephant walk cycle (Figure 11).

In Figure 13, we compare our method to using a single-level
method of [Bailey et al. 2018] separately at each LOD level. Our
method offers a large memory reduction. The goal of our work is
to rapidly construct the shapes at any chosen hierarchical level (or
levels) at runtime. For prior work to offer such a capability, it needs
to separately train and store neural networks at each hierarchical
level, essentially reconstructing the shape from scratch at each level;
this significantly increases the memory footprint. Note that prior
work cannot “naively” achieve such a capability by only training
on the finest level and then downsampling the result to any chosen
level, because this would always incur the computational cost of
the finest level, even if only, say, the coarsest level is needed. The
average PCA basis dimensions (for equal PCA reconstruction error)
are also smaller in our method, enabling smaller neural networks.
In the hand example (Figure 1) for our method, they are 13.1, 9.0,
5.6, 1.1, for LOD 1,2,3,4, respectively. They are 13.1, 13.7, 13.1, 13.1
when using the single-level method separately on each level; the dif-
ference is particularly salient at the finest LODs, where our method
benefits from the work already done on coarser LODs. The same is
observed in other examples. In terms of speed, our method is clearly
better when all hierarchical levels need to be computed, and offers
comparable speed when only a single level needs to be computed.
We use PyTorch [Paszke et al. 2019] to perform the training,

using Adam’s optimizer [Kingma and Ba 2015]. We use a learning
rate of 0.01 at the start of training, and decay it by a factor of
0.999999 after each epoch, for 5000 epochs. The different regions are
independent and can be trained in parallel. In Figure 14, we measure
the training time of our method. As expected, the time depends on
the accuracy parameter 𝜖 and the number of basis functions 𝑛0 .
Figure 14 also compares to prior work [Bailey et al. 2018]: it can be
seen that our training times are substantially faster, thanks to the
lower dimensions of the per-level spatially localized regions made
possible by the incremental nature of our shape construction. Faster
training times permit artists to explore various training parameters
to arrive at the optimal speed vs memory tradeoff.

In Figure 15, we compare our technique to Dual Quaternion Skin-
ning [Kavan et al. 2008]. Because we learn from a quality rig, our
method produces visually better shapes that resolve self-contact
and preserve volume. Tables 1 and 2 give our performance statistics,
Figure 12 shows failure, and Figure 16 analyzes multicore perfor-
mance. Complete training data is shown in Supplementary Material.

8 CONCLUSION
We gave a technique to approximate and generalize arbitrary train-
ing mesh deformations using a set of hierarchically defined neural
networks. We do so by employing a partition of unity at multi-
ple resolution levels, and defining the shape functions using the
mesh prolongation (i.e., upsampling) operator of a standard and
widely used mesh simplification algorithm. These functions then
guide our neural networks support and construction. The resulting
technique permits a progressive computation of mesh deforma-
tions, enabling one to trade computational accuracy for speed. Our
technique greatly decreases the required memory in applications
involving meshes at multiple resolution levels; such applications are

ACM Trans. Graph., Vol. 43, No. 6, Article 216. Publication date: December 2024.

216:10 • M. Zheng et al.

Fig. 13. Comparison to a single-level method. We train our LOD method and the single-level method [Bailey et al. 2018], under the same training
dataset. Hand example (Figure 1). In these plots, we only vary the number of regions and the PCA approximation threshold. The purpose of varying the PCA
approximation threshold is to control the speed VS accuracy (and memory VS accuracy) tradeoff. We repeat the experiment for several #regions (50, 100, 200),
essentially performing a parameter sweep to discover the number of regions producing best results. The purpose of varying #regions is to ensure comparison
fairness, as different methods may be optimal under different #regions. For plot clarity, we do not show datapoints where there is another datapoint that is
better both in test RMSE and the running time (for the computational speed subplot) and in test RMSE and the memory (for the memory subplot). We do not
compare the memory to compute a single level, because such a method would not be able to construct the entire LOD hierarchy (the goal of our paper).

Fig. 14. Training time of our multi-resolution method, corresponding
to Figure 13. Thanks to the incremental nature of our neural networks, the
reduced dimensions of our regions are significantly lower than in prior
work [Bailey et al. 2018], resulting in faster training times of our method.

common in computer games and other interactive systems. Our ba-
sis functions at all levels are prolongations of a partition of unity on
M0 . We considered an alternative scheme whereby the basis func-
tions onM𝑖+1 are obtained directly from the upsampling operator
U𝑖 , without using coarser levels. This produces basis functions that
become progressively narrower on progressive levels; but did not
improve performance in our examples because our basis functions
are occupying relatively narrow regions as is (Figure 7). Our tech-
nique requires good-quality training shapes, which is a standard,
but time-consuming process. As common with learning methods,
quality outside of the training dataset diminishes. We only use the
CPU to compute skinning and correctives, but both of those could

Fig. 15. Comparison to dual quaternions. Our method produces visually
better shapes that closely match the ground truth (FEM simulation with
self-contact handling and volume preservation), at a modest increase of
computing time. This pose was unseen during training.

Fig. 16. Multicore performance. CPU performance vs number of cores
on a complex example (72,414 vertices). Hand example, finest LOD (LOD 4).

be offloaded to the GPU, either using vertex or compute shaders, or
CUDA. In the future, we would like to employ our multi-resolution
construction for other applications in computer animation, e.g., to
model or approximate other signals defined on 3D meshes.

ACM Trans. Graph., Vol. 43, No. 6, Article 216. Publication date: December 2024.

Multi-Resolution Real-Time Deep Pose-Space Deformation • 216:11

ACKNOWLEDGMENTS
This research was sponsored in part by NSF (IIS-1911224), USC
Provost Fellowship to Mianlun Zheng, Bosch and Adobe Research.

REFERENCES
Ivo Babuška, Gabriel Caloz, and John E. Osborn. 1994. Special Finite Element Methods

for a Class of Second Order Elliptic Problems with Rough Coefficients. SIAM J.
Numer. Anal. 31, 4 (1994), 945–981.

Alberto Badías, David González, Icíar Alfaro, Francisco Chinesta, and Elías Cueto. 2020.
Real-time interaction of virtual and physical objects in mixed reality applications.
Internat. J. Numer. Methods Engrg. 121, 17 (2020), 3849–3868.

Stephen Wells Bailey. 2020. Applications of Machine Learning for Character Animation.
University of California, Berkeley.

Stephen W. Bailey, Dalton Omens, Paul Dilorenzo, and James F. O’Brien. 2020. Fast and
Deep Facial Deformations. ACM Transactions on Graphics (SIGGRAPH 2020) 39, 4,
Article 94 (2020).

Stephen W. Bailey, Dave Otte, Paul Dilorenzo, and James F. O’Brien. 2018. Fast and
Deep Deformation Approximations. ACM Transactions on Graphics (SIGGRAPH
2018) 37, 4, Article 119 (2018).

Hugo Bertiche, Meysam Madadi, and Sergio Escalera. 2021. PBNS: Physically based
neural simulator for unsupervised garment pose-space deformation. ACM Trans. on
Graphics (SIGGRAPH Asia 2021) 40, 6 (2021).

Ioana Boier-Martin, Denis Zorin, and Fausto Bernardini. 2005. A survey of subdivision-
based tools for surface modeling. DIMACS Series in Discrete Math and Theoretical
CS 67 (2005), 1.

Jean-Daniel Boissonnat and Steve Oudot. 2005. Provably good sampling and meshing
of surfaces. Graphical Models 67, 5 (2005), 405–451.

Steve Capell, Seth Green, Brian Curless, Tom Duchamp, and Zoran Popović. 2002. A
Multiresolution Framework for Dynamic Deformations. In Proc. of the Symp. on
Comp. Animation 2002. 41–48.

Dan Casas, Jesús Pérez, Miguel A Otaduy, Cristian Romero, et al. 2021. Learning Contact
Corrections for Handle-Based Subspace Dynamics. (2021).

Nuttapong Chentanez, Miles Macklin, Matthias Müller, Stefan Jeschke, and Tae-Yong
Kim. 2020. Cloth and skin deformation with a triangle mesh based convolutional
neural network. In Computer Graphics Forum, Vol. 39. 123–134.

Gilles Debunne, Mathieu Desbrun, Marie-Paule Cani, and Alan H. Barr. 2001. Dynamic
Real-Time Deformations Using Space & Time Adaptive Sampling. In Proc. of ACM
SIGGRAPH 2001. 31–36.

Boyang Deng, John P Lewis, Timothy Jeruzalski, Gerard Pons-Moll, Geoffrey Hinton,
Mohammad Norouzi, and Andrea Tagliasacchi. 2020. NASA: Neural articulated
shape approximation. In Proc. of Euro. Conf. on Comp. Vision (ECCV). 612–628.

Lawson Fulton, Vismay Modi, David Duvenaud, David IW Levin, and Alec Jacobson.
2019. Latent-space dynamics for reduced deformable simulation. In Computer
Graphics Forum, Vol. 38. 379–391.

T. A. Funkhouser and C. H. Séquin. 1993. Adaptive Display Algorithm for Interactive
Frame Rates During Visualization of Complex Virtual Environments. In Proc. of
ACM SIGGRAPH 93. 247–254.

Michael Garland and Paul S. Heckbert. 1997. Surface simplification using quadric error
metrics. In Proc. of ACM SIGGRAPH 97. 209–216.

Eitan Grinspun, Petr Krysl, and Peter Schröder. 2002. CHARMS: A Simple Framework
for Adaptive Simulation. ACM Trans. on Graphics 21, 3 (July 2002), 281–290.

Marc Habermann, Lingjie Liu, Weipeng Xu, Michael Zollhoefer, Gerard Pons-Moll,
and Christian Theobalt. 2021. Real-time deep dynamic characters. ACM Trans. on
Graphics (SIGGRAPH 2021) 40, 4 (2021), 1–16.

Hang Si. 2011. TetGen: A Quality Tetrahedral Mesh Generator and a 3D Delaunay
Triangulator.

Daniel Holden, Bang Chi Duong, Sayantan Datta, and Derek Nowrouzezahrai. 2019. Sub-
space neural physics: Fast data-driven interactive simulation. In Symp. on Computer
Animation (SCA). 1–12.

Hugues Hoppe. 1996. Progressive meshes. In Proc. of ACM SIGGRAPH 96. 99–108.
Alec Jacobson, Zhigang Deng, Ladislav Kavan, and John P. Lewis. 2014. Skinning:

Real-time Shape Deformation. In ACM SIGGRAPH 2014 Courses.
Doug L. James and Dinesh K. Pai. 2003. Multiresolution Green’s Function Methods for

Interactive Simulation of Large-scale Elastostatic Objects. ACM Trans. on Graphics
22, 1 (2003), 47–82.

Ladislav Kavan, Steven Collins, and Carol O’Sullivan. 2009. Automatic linearization of
nonlinear skinning. In Proc. of Symp. on Interactive 3D Graphics and Games. 49–56.

L. Kavan, S. Collins, J. Zara, and C. O’Sullivan. 2008. Geometric Skinning with Approx-
imate Dual Quaternion Blending. ACM Trans. on Graphics 27, 4 (2008).

Ladislav Kavan, Dan Gerszewski, AdamW. Bargteil, and Peter-Pike Sloan. 2011. Physics-
Inspired Upsampling for Cloth Simulation in Games. ACMTrans. Graph. 30, 4, Article
93 (2011), 10 pages.

Diederik Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Optimization.
In Int. Conf. on Learning Representations (ICLR).

P. G. Kry, D. L. James, and D. K. Pai. 2002. EigenSkin: Real Time Large Deformation
Character Skinning in Hardware. In In Symp. on Computer Animation (SCA).

Binh Huy Le and Zhigang Deng. 2014. Robust and accurate skeletal rigging from mesh
sequences. ACM Trans. on Graphics (SIGGRAPH 2014) 33, 4 (2014), 1–10.

Binh Huy Le and John-Peter Lewis. 2019. Direct delta mush skinning and variants.
ACM Trans. on Graphics (SIGGRAPH 2019) 38, 4 (2019), 113–1.

J. P. Lewis, Matt Cordner, and Nickson Fong. 2000. Pose Space Deformation: A Unified
Approach to Shape Interpolation and Skeleton-Driven Deformation. In Proc. of ACM
SIGGRAPH 2000. 165–172.

Peizhuo Li, Kfir Aberman, Rana Hanocka, Libin Liu, Olga Sorkine-Hornung, and Bao-
quan Chen. 2021. Learning skeletal articulations with neural blend shapes. ACM
Trans. on Graphics (SIGGRAPH 2021) 40, 4 (2021), 1–15.

Hsueh-Ti Derek Liu, Jiayi Eris Zhang, Mirela Ben-Chen, and Alec Jacobson. 2021. Sur-
face multigrid via intrinsic prolongation. ACM Transactions on Graphics (SIGGRAPH
2021) 40, 4, Article 80 (2021), 13 pages.

Lijuan Liu, Youyi Zheng, Di Tang, Yi Yuan, Changjie Fan, and Kun Zhou. 2019. Neu-
roskinning: Automatic skin binding for production characters with deep graph
networks. ACM Trans. on Graphics (SIGGRAPH 2019) 38, 4 (2019), 1–12.

M. Loper, N. Mahmood, J. Romero, G. Pons-Moll, andM. J. Black. 2015. SMPL: A Skinned
Multi-Person Linear Model. ACM Trans. on Graphics (SIGGRAPH Asia 2015) 34, 6
(2015), 248:1–248:16.

Ran Luo, Tianjia Shao, Huamin Wang, Weiwei Xu, Xiang Chen, Kun Zhou, and Yin
Yang. 2018. NNWarp: Neural network-based nonlinear deformation. IEEE Trans. on
Visualization and Computer Graphics (TVCG) 26, 4 (2018), 1745–1759.

A. McAdams, Y. Zhu, A. Selle, M. Empey, R. Tamstorf, J. Teran, and E. Sifakis. 2011.
Efficient elasticity for character skinning with contact and collisions. ACM Trans.
on Graphics (SIGGRAPH 2011) 30, 4 (2011).

Mixamo. 2024. Adobe Mixamo project, https://www.mixamo.com.
Yutaka Ohtake, Alexander Belyaev, Marc Alexa, Greg Turk, and Hans-Peter Seidel. 2003.

Multi-level partition of unity implicits. ACM Trans. on Graphics (SIGGRAPH 2003)
22, 3 (2003), 463–470.

Miguel A. Otaduy. 2004. 6-DoF Haptic Rendering Using Contact Levels of Detail and
Haptic Textures. Ph.D. Dissertation. Department of Comp. Science, University of
North Carolina at Chapel Hill.

Miguel A. Otaduy, Daniel Germann, Stephane Redon, and Markus Gross. 2007. Adaptive
Deformations with Fast Tight Bounds. In Symp. on Computer Animation (SCA). 181–
190.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chin-
tala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning Library.
arXiv preprint arXiv:1912.01703 (2019).

Cristian Romero, Dan Casas, Maurizio M Chiaramonte, and Miguel A Otaduy. 2022.
Contact-centric deformation learning. ACM Trans. on Graphics (SIGGRAPH 2022)
41, 4 (2022), 1–11.

Cristian Romero, Miguel A Otaduy, Dan Casas, and Jesus Perez. 2020. Modeling and
estimation of nonlinear skin mechanics for animated avatars. In Computer Graphics
Forum, Vol. 39. Wiley Online Library, 77–88.

Igor Santesteban, Elena Garces, Miguel A Otaduy, and Dan Casas. 2020. SoftSMPL:
Data-driven Modeling of Nonlinear Soft-tissue Dynamics for Parametric Humans.
In Computer Graphics Forum, Vol. 39. Wiley Online Library, 65–75.

Igor Santesteban, Miguel A Otaduy, and Dan Casas. 2019. Learning-based animation
of clothing for virtual try-on. In Computer Graphics Forum, Vol. 38. Wiley Online
Library, 355–366.

Steven L Song, Weiqi Shi, and Michael Reed. 2020. Accurate face rig approximation
with deep differential subspace reconstruction. ACM Trans. on Graphics (SIGGRAPH
2020) 39, 4 (2020), 34–1.

Hongyi Xu and Jernej Barbič. 2014. Signed Distance Fields for Polygon Soup Meshes.
Graphics Interface 2014 (2014).

Zhan Xu, Yang Zhou, Evangelos Kalogerakis, Chris Landreth, and Karan Singh. 2020.
Rignet: Neural rigging for articulated characters. ACM Trans. on Graphics (SIG-
GRAPH 2020) 39, 4 (2020), 14.

Jiayi Eris Zhang, Jérémie Dumas, Yun Fei, Alec Jacobson, Doug L James, and Danny M
Kaufman. 2022. Progressive simulation for cloth quasistatics. ACM Transactions on
Graphics (SIGGRAPH Asia 2022) 41, 6 (2022), 1–16.

Mianlun Zheng, Bohan Wang, Jingtao Huang, and Jernej Barbič. 2022. Simulation of
Hand Anatomy Using Medical Imaging. ACM Trans. on Graphics (SIGGRAPH Asia
2022) 41, 6 (2022).

Mianlun Zheng, Yi Zhou, Duygu Ceylan, and Jernej Barbič. 2021. A deep emulator for
secondary motion of 3d characters. In Proceedings of the IEEE/CVF Conf. on Computer
Vision and Pattern Recognition. 5932–5940.

Yongning Zhu, Eftychios Sifakis, Joseph Teran, and Achi Brandt. 2010. An efficient
multigrid method for the simulation of high-resolution elastic solids. ACM Trans.
on Graphics (TOG) 29, 2 (2010), 16.

ACM Trans. Graph., Vol. 43, No. 6, Article 216. Publication date: December 2024.

	Abstract
	1 Introduction
	2 Related Work
	3 Overview
	4 Multi-resolution pose-space deformation
	5 Neural deformation functions
	6 Run-time code and memory considerations
	7 Results
	8 Conclusion
	Acknowledgments
	References

