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Abstract
Real-time simulation of elastic objects is of great importance for computer graphics and virtual reality applications. The
fast mass spring model solver can achieve visually realistic simulation in an efficient way. Unfortunately, this method suf-
fers from resolution limitations and lack of mechanical realism for a surface geometry model, which greatly restricts its
application. To tackle these problems, in this paper we propose a fast mass spring model solver for high-resolution elastic
objects. First, we project the complex surface geometry model into a set of uniform grid cells as cages through *cages
mean value coordinate method to reflect its internal structure and mechanics properties. Then, we replace the original
Cholesky decomposition method in the fast mass spring model solver with a conjugate gradient method, which can make
the fast mass spring model solver more efficient for detailed surface geometry models. Finally, we propose a graphics
processing unit accelerated parallel algorithm for the conjugate gradient method. Experimental results show that our
method can realize efficient deformation simulation of 3D elastic objects with visual reality and physical fidelity, which
has a great potential for applications in computer animation.
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1 Introduction

With the enormous improvement in computer’s calculation

ability, computer graphics and virtual reality technology

are widely applied in computer animation, games and vir-

tual surgery etc. where 3D elastic object simulation plays a

central role.1–3 Based on this, efficient and visually realis-

tic deformation effects of high-resolution geometry models

of 3D elastic objects are needed in many scenes. By far,

the most widely used methods to simulate elastic objects

are through geometric models, finite element models and

mass spring models (MSMs).

The geometric models are typically coordinates-based

models, such as *cages mean value coordinates (*Cages

MVC) which can produce mesh deformation quite effi-

ciently, but lack mechanics properties of elastic objects.4

The finite element method is a kind of numerical solution

method which belongs to mechanics and physical prob-

lems.5 In practice, a finite element method requires plenty

of complex numerical calculations and it would be diffi-

cult to achieve real-time effects with high-resolution mod-

els. MSMs discretize the continuous elastic objects to form

points as masses and connect them with springs.6 In this

way, the deformation results of elastic objects are obtained

by calculating the mechanical changes of springs. This

method has characteristics of high velocity and perfect

efficiency.

Recently, Liu et al. proposed the fast MSM to solve a

standard mass spring system using fast implicit solution,

which transfers the mass spring problem into an optimiza-

tion problem.7 It is a promising way to generate efficient

deformation simulation of low-resolution surface geome-

try models. However, when confronting simulation of

high-resolution 3D elastic objects, the fast MSM fails to

reflect the internal structure and mechanics properties of

the surface geometry model. Furthermore, the fast MSM is

not suitable to achieve real-time computation and high res-

olution surface geometry models because its efficiency

will largely decrease as the model’s resolution increases.

These limitations greatly affect the application of the fast

MSM.
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To tackle the limitations of the fast MSM, in this paper

we propose a fast MSM solver for high-resolution elastic

objects. First, we project the complex surface geometry

model into a set of uniform grids as cages which can

reflect the surface geometry model’s internal structure and

mechanics properties and acquire physical fidelity. Also,

we use the *Cages MVC method to construct the mapping

relation between the geometry model and simulation

cages. Then, the original Cholesky decomposition method

in the fast MSM solver is replaced by the conjugate gradi-

ent method, which makes the fast MSM solver more effi-

cient, so that it is applicable for the detailed surface

geometry model. Finally, we realize the parallel algorithm

for the conjugate gradient method by graphics processing

unit (GPU) acceleration. This paper achieves efficient

deformation simulation of 3D elastic objects with visual

reality and physical fidelity.

2 Related work

In recent years, there are quantitative findings concentrat-

ing on the deformation simulation of mesh models.8–10

Among geometric models, Floater put forward MVCs and

3D MVCs, which map the internal vertex coordinates of

polyhedron to every vertex through barycenter coordinate

mapping.11,12 Then Tao Ju et al. applied the MVC method

to the deformation of a closed triangular mesh, but it has

an obvious flaw in the mapping relation realization of non-

convex polyhedron.13 To deal with this problem, Lipman

et al. proposed harmonic coordinates, which however has

the disadvantage of lacking a shape-preserving property.14

Then green coordinates are presented to solve the problems

above, in which it not only uses positions of polyhedron

vertices but also includes vectors of every simple surface

of polyhedron into the calculation of internal vertices’

locations to achieve better deformation results.15 These

three methods mentioned above all belong to geometric

deformation models, meaning that they use a polyhedron

(or a cage) to cover the target model and construct a map-

ping relation between them. By controlling the locations of

vertices in the cage and mapping the changed locations

back to the original model, the deformed model can finally

be rendered. However, these three methods adopt only one

cage to control the model during the simulation computa-

tion and hence it constrains the effect of deformation.

Further, Garcia et al. proposed the *Cages MVC that con-

trols the target model through several cages, which enables

the control to become more flexible.4 And in different

cages, the model can have a greater fine and smooth defor-

mation effect by using a smooth function.4 Besides, Gao

et al. proposed a data-driven approach for realistic shape

morphing. The method does an interpolation calculation

through a pair of source and target models and a database

of similar models to reach the deformation effect.9 Since

the geometry based deformation models have advantages

of simplicity and velocity, they are widely applied in game

and animation fields. However, this method cannot present

the physical effect of an object during the process of defor-

mation, which means that it lacks physical reality.

There exists a lot of physics based animation methods

in which the finite element method and the MSM are the

most widely used ones. Miller proposed the total

Lagrangian explicit dynamic (TLED) finite element

method which can provide a perfect simulation effect for a

non-linear model.16 This method is different from the

Lagrange method in that it allows the precomputation of

all the derivatives. Therefore, the method is capable of

simulating a non-linear model efficiently, but the TLED

method has a critical limitation for time steps in order to

ensure stability. For example, for a mesh with 10 elements

per side, the time step has to be less than 0.0013 s which

leads to the impossibility of real time simulation. In addi-

tion to the TLED method, Gilles et al. utilized Lagrangian

mechanics to reflect the internal physical characteristics

on each sample point of the model,17 and Geoffrey et al.

presented an algorithm for finite element simulation of

elastoplastic solids.18 All these finite element methods

above do have problems with the lack of real-time display.

For instance, in the work by Gilles et al.,17 the frame rate

for even low resolution turtle model is 7 FPS. Matthieu

et al. presented a method for simulating highly detailed

geometric models with heterogeneous material properties

using very coarse grids.19 This technique results in signifi-

cant improvements in an efficient physics based simula-

tion of highly detailed objects. Bargteil and Cohen

developed a quadratic tetrahedral element to demonstrate

elastic bodies with non-linear rest shapes.20

Since the MSM has the feature of simplicity and

easy application, it is widely employed in deformation

simulation.21 Liu et al. came up with the fast MSM in

which a kind of fast solution for implicit equations for a

mass spring system is presented.7 This method regards a

dynamics equation in each time step as a minimization

problem. When solving the minimization problem, the lin-

ear system equation is independent of the current state

while at the final linear solution process. Therefore, we

can complete preprocessing computation to achieve the

aim of fast solution. However, the physical structure of the

MSM is comparatively stable, thus the application of this

method is constrained to one-dimensional or two-

dimensional structures like hair and cloth. If we apply the

3D geometry mesh model into the MSM, it cannot reflect

the internal structure and mechanics properties and fails to

acquire physical fidelity, which is necessary to be solved.

Moreover, efficiency of the fast MSM is considerable but

its advantage becomes weaker when confronting a 3D

model. In the experiments, the frame time for a curtain is

50 ms but it is 203 ms for a dog model with the same reso-

lution. Besides fast MSM, Martin et al. realize the
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simulation effect of various complicated elastic materials

on an artistic level through combining example-based

simulation and computational mechanics.22 San-Vicente

et al. put forth a cubical MSM design based on a tensile

deformation test and a non-linear material model,23 and its

experiment results demonstrate that the MSM can be sub-

stituted with non-linear finite elements and can be applied

to the simulation of elastic materials such as soft tissue.

3 Basics
3.1 *Cages MVC

The method of *Cages MVC was first proposed by Garcial

et al., where it could control the displacement of a target

model through a number of divided cages.4 Moreover,

*Cages MVC employs a smooth function to make the con-

trol of a target model more flexible and it also enables the

cages to obtain more fine and smooth displacement results.

According to Floater et al.,12 the coordinate x pð Þ of a point
p inside a cage which consists of n vertices is calculated by

an affine combination function as follows:

x pð Þ=
Xn

i= 1

li vi, pð Þ � x við Þ ð1Þ

where vi denotes the ith vertex on the cage and li means

the MVC function corresponding to the ith vertex. 3D

MVC utilizes tetrahedron as a processing unit, as shown in

Figure 1.

li in Equation (1) is defined as follows:

li =
wiPn

j= 1

wj

ð2Þ

wi =
1

ri

X
vi2T

mi, T ð3Þ

mi, T =
bjk +bijnijnjk +bkinkinjk

2einjk

ð4Þ

where bij is the included angle between segment [p,vi] and

[p,vj] and nij is the unit normal vector that points inside to

the tetrahedron and is perpendicular to triangle [p,vi,vj] as

follows:

nij =
ei 3 ej

k ei 3 ej k
ð5Þ

Similarly, we can obtain values for bjk , bki, njk , and nki.

When locations of each vertex vi on the cage change dur-

ing the simulation, it will lead to a new x0 við Þ. After that
we should recalculate the position of target vertex p which

is covered by the cage as follows:

x0 pð Þ=
Xn

i= 1

li vi, pð Þ � x0 við Þ ð6Þ

However, there exists a problem among the neighboring

cages that is position discontinuity. We adopt a smoother

function s pð Þ to replace x pð Þ obtained before as follows4:

s pð Þ= b pð Þx pð Þ+ 1� b pð Þð ÞJ pð Þ ð7Þ

In Equation (7), b pð Þ stands for the boundary weight func-

tion, and J pð Þ is responsible for guaranteeing smooth tran-

sitions among neighboring cages and will behave similarly

to standard cage-based transformations as follows:

J pð Þ=
X
vi2Bc

W vi, pð ÞLvi
pð Þ ð8Þ

Here the weight function W vi, pð Þ takes charge of comput-

ing how much the transformation Lvi
pð Þ from each bound-

ary cage is blended and its value is normalized. Bc

represents vertices on the boundary of neighboring cages

and Lvi
pð Þ denotes a smooth and local transformation.

Since vertices on the boundary of neighboring cages

are covered by a series of cages, we set jc við Þ to express all

these cages and all the cages adjacent to this cage are Adjc.

In a newly emerged cage jc við Þ, we obtain MVC function

l u, pð Þ for the boundary vertex vi, and u is each vertex of

jc við Þ. Through the newly formed coordinate w, we can

now solve out W vi, pð Þ and Lvi
pð Þ in Equation (8) and

therefore J pð Þ is obtained.
What we can learn from the definition of b pð Þ is that

when p belongs to the boundary of a cage, b pð Þ equals to
0. But it equals to 1 when p lies on a plane irrelevant to

the intersection boundary. Through such feature we can

obtain:

b pð Þ= fh

Y
ci2Adj cð Þ

1�
X
vi2Bc

l vi, pð Þ

0
@

1
A

0
@

1
A ð9Þ

where fh is a smoothing function with parameter h 2 0, 1ð �
which satisfies fh 0ð Þ= fh 1ð Þ= 0, fh xð Þ= 1 x5 hð Þ and

fh 5 0. h is used to contract or extend f in the range of

0, 1ð �, and its size can be changed to meet different needs.

Obtaining values of b pð Þ and J pð Þ, we can finallyFigure 1. 3D MVC.
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calculate the newly formed s pð Þ which makes it possible

to map the deformed cages back to surface mesh model

more smoothly.

3.2 Fast MSM

The fast MSM is a method to solve a standard mass

spring system that obeys Hooke’s Law with a fast impli-

cit solution.7 During the solving process, the method

transfers the mass spring problem into an optimization

problem, which is used to obtain accurate deformable

results. According to Newton’s second law we can

obtain:

qn+ 1 � 2qn + qn�1 = t2M�1f qn+ 1ð Þ ð10Þ

where qn 2 R3m represents the location matrix of each

mass at time n. The internal forces of each mass at time n

can be described as f qn+ 1ð Þ and f 2 R3m. t stands for the

time step and M 2 R3m 3 3m is a diagonal matrix whose

element is the weight of each corresponding mass. Since

the equation is non-linear, we have to convert it into a lin-

ear one for the solution. In addition, in order to simplify

the expression, the unknown variable qn+ 1 is expressed as

x and the known variables 2qn � qn�1 as y. Consequently,
the equation is simplified as follows:

M x� yð Þ= t2f xð Þ ð11Þ

The solution for Equation (11) is the extreme point of the

following equation, as follows:

g xð Þ= 1

2
x� yð ÞTM x� yð Þ+ t2E xð Þ ð12Þ

where E xð Þ : R3m ! R. is the potential function and

f= �rE. Therefore, the problem is transferred to solve

the minimal value of g(x). On the basis of Hooke’s Law,

the elastic potential energy can be defined as follows:

1

2
k( k p1 � p2 k �r)2 ð13Þ

here, the spring’s initial length is r, positions of its two

ends are p1 and p2, and its stiffness coefficient is k.

Through the transformation of triangle inequality and

including external forces into the energy equation, the

energy can be ultimately illustrated as follows:

E(x)= min
d2U

1
2
xTLx� xTJd+

1
2

Ps
i= 1

kid
2
i + xTfext

ð14Þ

in which U is the set of spring directions at rest state, s is

the total number of springs, and fext stands for external

force. Furthermore, d, L 2 R3m 3 3m, and J 2 R3m 3 3m are

defined as follows:

d= r p1 � p2ð Þ= p1 � p2k kð Þ
L=

Ps
i= 1

kiAiA
T
i

� �
� I3

J=
Ps

i= 1

kiAiS
T
i

� �
� I3

8>>>><
>>>>:

ð15Þ

where Ai 2 Rm is the incidence vector of the ith spring,

and Si 2 Rs is the ith spring indicator. The matrix

I3 2 R33 3 is the identity matrix and � denotes the

Kronecker product. By inserting the energy equation into

Equation (12), the optimization problem is transformed as

follows:

min
x2Rm, d2U

1

2
xT M+ t2L
� �

x� t2xTJd+

xT t2fext �My
� � ð16Þ

Solving the equation above by derivation, we have:

M+ t2L
� �

x= t2Jd +My� t2fext ð17Þ

In Equation (17), the left part M+ t2L keeps invariant,

meaning that we can calculate this part during the prepro-

cessing procedure without loop computation in the simula-

tion process. For the right part of the equation, M, t and L
are all constants. Hence during the calculation of each time

step, we only need to update y, d, and f.
During the process of solving x, since the coefficient

matrix M+ t2L is symmetric positive definite and also

invariant, the Cholesky decomposition method is able to

be applied to this sparse matrix to solve the equation.

4 Our method

In this section, we present a fast MSM solver for high-

resolution 3D elastic objects. By projecting the complex

surface geometry model into a set of uniform grid cells as

cages using the *Cages MVC method, our method enables

the surface geometry model to have internal structure and

mechanics properties, thus acquiring physical fidelity.

What is more, for the purpose of real-time simulation on

high-resolution models, the original Cholesky decomposi-

tion method in the fast MSM is replaced by the conjugate

gradient method,7 and further it is accelerated by a GPU.

4.1 Surface geometry model projection

The fast MSM can solve the surface geometry model like

cloth efficiently,7 but one layer of surface mesh is not

enough to illustrate the complicated internal structure of

3D elastic objects. To obtain deformation simulation

results within physical fidelity, we project the complex

surface geometry model into a set of uniform grid cells as

cages through the *Cages MVC method to generate its

internal structure and mechanics properties. The created
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uniform grid cells are used as cages which take responsi-

bility for the simulation calculation, whereas the elastic

object’s surface mesh model is in charge of the simulation

render and display. In such way, the elastic object can hold

its geometry characteristics and its physical features of

internal structure and mechanics properties as well.

Next, we will explain how to make the boundary and

internal area of the surface geometry mesh model be cov-

ered by grid cells. First we obtain the surface mesh mod-

el’s circumscribed cuboid within the range of Nx � Ny � Nz

which is calculated by the maximum and minimum coor-

dinates of the surface mesh model. Next we utilize the

cuboid to set a number of cubic grid cells with side length

of L0 to cover both the exterior side and interior side of

the whole mesh model. Each grid cell consists of eight

vertices and 12 edges and its index of the circumscribed

cuboid is expressed as p, q, rð Þ at three axes x, y, zð Þ
respectively. Suppose the start coordinate of the circum-

scribed cuboid is x0, y0, z0ð Þ, therefore we can obtain the

start coordinate of a certain grid inside the cuboid by

x0 + p � L0, y0 + q � L0, z0 + r � L0ð Þ.
As shown in Figure 2, we divide the cuboid into three

kinds of grid cells, the black for external, the red for

boundary, and the blue for internal ones, according to their

relations with the surface mesh model. Among them, the

external grid cell has no direct linkage to the elastic object

structure, meaning we will ignore this part of the grid cells

in simulation computation. Nevertheless, the boundary

grid cell is a kind of grid area that only covers the entire

boundary of the mesh model and the internal grid cell is

the one that fills the inside of the mesh model. Both the

boundary grid cells and the internal grid cells are called

valid grid cells and we make use of these valid grid cells

to solve the calculation for the mass spring problem.

The most vital step in circumscribed cuboid division is

to make sure that all boundary grid cells can cover both

the vertices and triangle facets of the surface model. For

example, if there is a certain vertex v1 in a triangle facet

with coordinate of x1, y1, z1ð Þ, what we can learn from the

grid cell generation step above is that the index of the

vertex’s covering cell is x1 � x0ð Þ=bð
L0, y1 � y0ð Þ=L0, z1 � z0ð Þ=L0cÞ. Similarly, we can get the

other two cells’ indices of vertices on the triangle facet

and mark these three grid cells as boundary cells for the

triangle facet. However, if the side length of the triangle

facet exceeds L0, the boundary cells containing three ver-

tices maybe unable to cover the whole facet, as we can see

in Figure 3. To deal with such problem, we have to pro-

duce some sample points on the triangle facet to generate

more grid cells which can cover the entire facet.

Suppose that coordinates of the three vertices on a cer-

tain triangle facet are v1 x1, y1, z1ð Þ, v2 x2, y2, z2ð Þ, and

v3 x3, y3, z3ð Þ, and its three side lengths are dist1, 2, dist2, 3,

and dist1, 3 in which the maximum one is set as distmax

(here we assume the maximum side is v1, 2). When distmax

is longer than L0, we set n= distmax=L0d e as the partition

sizes. The coordinates of the sample points we generate on

the facet are v3 + n i
n
� v1, 3 +

j

n
� v2, 3

� �
where i, j 2 0, nð Þ,

and the rest can be done in the same way. In this way, we

produce new sample points on the triangle facet to obtain

needed grid cells to cover the whole facet.

After we have gained all valid grid cells, we then have

the physical model for the mass spring problem. Here we

regard each grid cell vertex as mass, and each grid vertex

has at most 26 neighboring springs. In our method, all

these valid grid cells are actually cages and we apply the

*Cages MVC method to calculate the *Cages MVC of

each vertex on the surface mesh model, which makes it

possible to map cages back to the surface model after

simulation solution. As described in Figure 4, p is a vertex

of surface mesh model and vi i= 1, 2, . . . , 8ð Þ is the vertex
of the cage. Since the tetrahedron is a processing unit in

the MVC calculation, we regard a grid cell as a dodecahe-

dron, and divide its six square facets into 12 triangle facets

while calculating the MVC.

4.2 Conjugate gradient method for fast MSM

In order to retain detailed information of the surface mesh

model, it is often required to set the cage’s length as a

rather small value during simulation processing. However,

such action may result in an excessive number of masses

Figure 2. External, boundary, and internal grid cells.

Figure 3. The ample points generation in a triangle facet.
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and springs generated in the physical model. Moreover,

the size of the coefficient matrix will easily reach more

than 104, causing it to be impossible to solve the mass

spring problem in real time.

Another point to note is that although in matrix

M+ t2L, M is a diagonal matrix, but in fact L is not a

band matrix. Therefore, if we use the Cholesky decompo-

sition method to decompose the coefficient matrix, there

can be no assurance that the decomposed matrix is sparse.

It brings no apparent advantage to solving the equation on

that basis. Furthermore, the size of the decomposed matrix

is likely to exceed the memory allocated and lead to

overflow.

Focusing on the problem above, we employ the conju-

gate gradient method to take the place of Cholesky decom-

position to solve the equation. Because M+ t2L is a

symmetrical positive definite matrix, it is perfectly suit-

able to use the conjugate gradient method to decompose it.

The conjugate gradient method will not destroy the spar-

sity of the matrices generated in and after the decomposi-

tion process. We use the conjugate gradient method to

increase the scale that fast MSM can solve and get the

advantage of a greater solution velocity to realize real-time

simulation for large scale scenes.

4.3 GPU-accelerated conjugate gradient method

In the solution process of conjugate gradient method, basic

operations are only between the matrix and vector, vector

and vector, and vector and real number. Each element in

these matrices and vectors is independent and unrelated

with each other. Therefore, it allows us to apply GPU par-

allel acceleration to increase the solution rate,24,25 and the

algorithm is demonstrated in Algorithm 1.

While calculating on the GPU, the mainly involved

operands are the matrix and vector.24 For vectors, we can

use continuous arrays to store them directly. However, for

matrices which are all sparse, it will cause a large waste of

GPU memory to store them in two-dimensional arrays and

increase the operation complexity. Hence, we use another

storage form to read and write matrices.

Figure 5 shows how we construct the data structure to

store sparse matrices, where three arrays, Row, Col and

Value, are used. Row stores the index of a certain element

in Value which is also the first element in a row of the

matrix, while the last element of Row contains the number

of nonzero elements in the sparse matrix. Each sparse

matrix’s nonzero element’s column numbers are stored in

Col and their values in Value. Here, Col and Value both

use strategy of row major order to save data, meaning that

we cannot write the current row’s elements into arrays,

unless all nonzero elements of the last row have been

already saved in the array.

The operation to matrix is multiplication between the

vector and matrix during computation. After we have

loaded the vector and matrix data into the GPU memory

respectively, set the number of operating threads as the

number of rows in sparse matrix. A certain element value

in Row can obtain the element’s index range in Col and

Value. By obtaining the data in Value and the column

number in Col, we can finish the multiplication operation

between the row elements and the vector. Once the row

vectors of the matrix have been successfully traversed, the

whole multiplication is done and we can get a result for

the vector.

5 Experimental results

The environment for the experiments is Xeon E3-1230 V2

3.30 373 GHz quad-core processor, 4 GB internal storage,

Figure 4. Vertex of the surface mesh model and its grid cell
(cage).

Algorithm 1 GPU acceleration based on the conjugate
gradient algorithm.

1: For equation M+ t2L
� �

x= t2Jd+My � t2f ext, set
A= M+ t2L

� �
, b= t2Jd+My � t2f ext.

2: Provide the initial parameters x = b, r =Ax � b, and
initialize constants ρ1 = k rk2, k= 1, permissible error e and
maximum iteration times kmax.

3: while
ffiffiffiffiffi
ρ1
p

>ε k bk2
� �

and k< kmaxð Þ do
4: if k= = 1 then
5: p= r
6: else
7: β= ρ1=ρ2
8: p= r +βp
9: end if

10: w =Ap
11: α= ρ1=p

Tw
12: x= x+αp
13: r = r � αw
14: ρ2 = ρ1
15: ρ1 = k r k22
16: k= k+ 1
17: end while
18: return x

802 Simulation: Transactions of the Society for Modeling and Simulation International 93(10)



Nvidia GeForce 374 GTX 650 Ti graphics card, VS 2012,

OpenGL, CUDA 6.5.

In the Figure 6, we present a comparison of the frame

rate between our method and the fast MSM. Our method

adopts the conjugate gradient method to solve Equation 17

and realize GPU acceleration whereas a Cholesky decom-

position is utilized in the fast MSM. The sample model

used is a Bunny model with 20,667 vertices and 41,330

triangle facets. We adjust the unit length of the grid cell to

get different numbers of valid grid cells, and the number

of valid vertices changes according to valid grid cells’. In

the figure, the blue stands for the GPU accelerated conju-

gate gradient method, the red for the conjugate gradient

method without GPU acceleration and the green for the

fast MSM. The figure illustrates that the conjugate gradi-

ent method ensures a higher speed of solution compared to

the Cholesky decomposition. Moreover, when accelerated

by the GPU, the method performs significantly better.

Even if we increase the number of valid grid cells, the

advantage is still apparent. Therefore, for a higher-

resolution model, our method achieves a better perfor-

mance than the fast MSM.

It is worth noting that in the paper we do not compare

our method with other most commonly used physics meth-

ods like the finite element method (FEM). The reason is

that the FEM adopts tetrahedron elements as the process-

ing unit but our method and the MSM use springs, there-

fore it is unable to make the two methods’ simulation

environment all the same. Consequently, here we show the

comparison results of our method and the fast MSM, which

indicates that our improvements based on fast MSM can

achieve better and apparent efficiency.

To prove the effectiveness of our method, we have

adopted six different models to perform the experiments.

And the experiments are fulfilled under different force

conditions. Firstly, we project the elastic object’s surface

geometry model into uniform grid cells by the method

mentioned in section 4 and then set up mapping relation

between mesh model and grid cells using *Cages MVC.

After that, exert corresponding forces to the model and

solve the dynamic solutions via method in Section 4 and

the final results are obtained. The acting forces include

dragging, pushing, pressing, and free falling.

As shown in Figure 7, we demonstrate the deformation

effect under the impact of a dragging force. During the

experiment, we applied three types of dragging force onto

the model. Firstly, the head of the Armadillo model is

fixed which means that the grid cells of this part cannot

move while under dragging. Then we drag the left leg of

the model by applying a force of a constant value. Under

the effect of a dragging force, the grid cells deform and

therefore the surface model also deforms due to the map-

ping relation. The result shows that under a constant drag-

ging force, the left leg moves to the left to reach an

equilibrium state, and its deformation also leads to the

right leg’s deformation. Besides, we make the Armadillo’s

leg still and exert force on its left palm and forehead

respectively. From Figure 7 we can learn that the dragging

force based deformation simulation of our method is

natural.

The scene shown in Figure 8 describes the deformable

simulation of the Dragon model, involving a raising and

Figure 5. Storage form of sparse matrix in the GPU.

Figure 6. Comparison of frame rate between our method and the fast MSM.
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pushing force. Fix the leg of the Dragon model at a certain

point and then apply an upward force to the model to raise

its head and wings. When the model deformation reaches

an equilibrium state, we then reverse the force to make the

deformable part downward as shown in the figure. When

the model’s wings and head move downward, its knees

also bend as a result.

The two experiments above test the deformation effect

under a constant force. However, it is quite important to

ensure that the deformable model could return to its origi-

nal state after releasing the force. Figure 9 demonstrates

that our method can achieve such goal. We place a glass

plane onto the Lung model and therefore its top part and

trachea begin to move down correspondingly. After a

while, the plane is removed so that the main body of the

Lung model returns to its original state and obtains a velo-

city upward because of accumulating certain elastic poten-

tial energy. Whereas the trachea part keeps its sagging

position.

In addition to the pressing force, a pulling force is

employed to inspect the model’s restoration capability.

We fix vessels of the Heart model and pull its chamber to

a certain position. As seen in Figure 10, the chamber

deforms back to its original position after we release the

force. The above two experiments testify the practicability

of our method further.

Free falling simulation is a significant part of elastic

object simulation. We use the Bunny and Brain model to

perform the experiments and solve the problem of collision

detection. In a fast simulation of the MSM, there is no

Figure 7. Deformation of Armadillo model under three types of dragging force. From left to right are: (a) initial front view,
(b) initial left view, (c) head fixed and leg dragged, (d) leg fixed and palm dragged, and (e) leg fixed and forehead dragged.

Figure 8. Deformation of Dragon model under raising and pushing force. From left to right are: (a) initial view, (b) leg fixed and
raise the head and wings, (c) raising deformation reaches a stationary state, (d) leg fixed and push the head and wings, and (e)
pushing deformation reaches a stationary state.

Figure 9. Deformation of Lung model under pressing force by a glass plane. From left to right are: (a) initial view, (b) place the
model on the ground press the lung by a glass plane, (c) remove the glass plane, (d) deformable part restores to the original state,
and (e) the trachea part sags.
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single variable denoting the velocity. So we use the loca-

tion difference between this moment and the last moment

to calculate the displacement and velocity.

After the objects collide with the ground their speeds

are invariable but the direction should then be the oppo-

site. Suppose that the location of the current moment is qn,

and the current velocity is vn = qn � qn�1. If the collision

happens, we set vn+ 1 = � vn and qn+ 1 = qn�1 to reverse

the velocity. In Figure 11, we can find that even for the

model with a complicated surface structure, the deforma-

tion effect is still natural and real through the method in

this paper. For the Bunny, because its ears and the front

part of the body are suspended in midair, these two parts

do not stay completely static after the collision happens,

but they move down a little. Ultimately, the two models

pop up from the ground because of the reversed velocity.

Table 1 lists model parameters and execution times for

the above experiments. It can be inferred from the table

that the number of valid grid cells and springs will affect

the running time. The Lung model and Heart model have

a similar vertex number but pretty different valid grid cell

numbers, thus leading to different frame rates. Yet in prac-

tice, we can control the number of valid grid cells and

springs by adjusting the unit length of the grid cell to sat-

isfy various needs. The experimental results illustrate that

without GPU parallel acceleration, the model we present

Figure 10. Deformation of Heart model under a pulling force. From left to right are: (a) initial view, (b) vessels fixed and pull the
heart chamber, (c) release the force, (d) and (e) deformable part restores to the original state.

Figure 11. Deformation of Bunny and Brain models under free falling. From left to right are: (a) initial view, (b) models falls down,
(c) models hit the ground, (d) models reverse speeds, and (e) models leap upward.
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cannot satisfy the need of real-time simulation perfectly

for rather large scale scenes. But if we accelerate the sol-

ving on a GPU, the calculation efficiency is increased sig-

nificantly so that we are able to assure the real-time

performance for high-resolution elastic objects. In the sup-

plementary video we provided, if the size of the model is

not extremely large, the simulation frame rates of the

model will exceed 24 because of our improvements and

GPU acceleration. Such frame rates assure viewers’ real

time experience.

6 Discussions

In the experiments above, we have achieved efficient

simulation of a high-resolution elastic object with visual

reality and physical fidelity. While during experiments,

we have found two limitations for our method.

One limitation is that the relationship between the force

and displacement is linear, due to Hooke’s Law of springs.

However, in Figure 9, if we press the Lung model with a

glass plane to a extremely low position, its deformation

effects will begin to distort and the model is not as stable

as before. Therefore, it is better to improve the linear equa-

tion for force and displacement when a model is under a

rather large force.

The other limitation is that during the deformation pro-

cess, our method lacks self-collision detection, which is

essential in complex deformation simulation scenes. In

Figure 11 for example, if we make the Bunny model fall

down from a rather high position, its ears will penetrate its

body because of the inertia force. Therefore, it is crucial to

add self-collision detection into our method to avoid such

situation.

7 Conclusions and future work

In this paper, we propose a fast MSM solver for high-

resolution 3D elastic objects. To retain the surface geome-

try model’s internal structure and mechanics properties

and acquire physical fidelity, we project the complex sur-

face geometry model into a set of uniform grids as cages

which are used in *Cages MVC to construct the mapping

relation between the geometry model and cages model,

which can reflect its internal structure and mechanics prop-

erties. To efficiently solve the high-resolution surface geo-

metry model, we replace the Cholesky decomposition

method in the fast MSM solver with the conjugate gradient

method, which can make the fast MSM solver more effi-

cient for detailed surface geometry models. Finally, we

propose a GPU-accelerated parallel algorithm for the con-

jugate gradient method. The experimental results demon-

strate that our method can realize efficient deformation

simulation of 3D elastic objects with visual reality and

physical fidelity, which has a great potential for applica-

tions in computer animation.

In future work, we will focus on improving the linear

equation for model displacement and applied force, such

as adding a non-linear displacement calculation equation

when the model is under an extremely large force.

Moreover, currently the proposed method is a proof-of-

concept only at the experimental stage, hence, it is not yet

of practical use due to certain limitations. For example, we

should introduce collision detection into our method to

achieve robust deformation effects with high physical fide-

lity and support more complex interactions far beyond the

simple deformation simulation. And we should also incor-

porate certain mature techniques to accommodate self-

collision caused by elastic deformation. Therefore, our

ongoing research efforts are concentrated on seeking an

efficient optimization method to guarantee the physical

accuracy in an absolute sense.
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Table 1. Execution time of deformation simulation on the CPU and GPU.

Models Vertices Triangle facets Valid grid cells Springs CPU (FPS) GPU (FPS)

Armadillo 12,602 25,200 8338 164,343 8.1 30.0
Dragon 23,620 47,140 11,536 232,240 5.5 23.9
Lung 43,040 86,085 6499 127,843 10.1 29.5
Heart 43,594 108,357 3126 62,465 19.9 53.4
Bunny 20,667 41,330 9946 193,589 7.3 30.1
Brain 55,024 110,047 13,661 264,481 5.1 20.0
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