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1 Improved initial guess for the muscle tet mesh in example poses

We use the following strategy to stably deform the tet mesh into a pose that is sufficiently similar
to the MRI pose. We first create a muscle fiber field on the muscle neutral tet mesh by solving a
Laplace equation [Saito et al., 2015]. Then, we define

R diag(a,1,1) RT

as the plastic strain of each muscle tetrahedron, where R is the local frame defined by the muscle
fiber direction, and a is the muscle contraction parameter [Saito et al., 2015]. We consider a simple
optimization problem

arg min
a,x

∥La∥2 + c1Eelastic(a,x) + c2Eatt(x), (1)

where a is the muscle activation at each tet, x contains the vertex positions of the muscle’s tet mesh
(our output, i.e., the initial guess), Eelastic is the elastic energy under the neutral rest shape, and
Eatt is the attachment energy of the muscle to the bones, modeled by zero rest-length springs at the
attachment sites. Intuitively, this objective function attempts to discover the muscle activation so
that, in the static equilibrium under the contraction, the attachment energy to the bones is small.
This problem is a simplified version of the optimization problem defined in [Wang et al., 2021],
because (1) it uses a much smaller space for the plastic strains, (2) it does not attempt to match
the sparse markers, and (3) we treat the static equilibrium constraint as a penalty term in the
objective function. The unconstrained optimization problem can be solved by using Newton’s
method. The DOFs provided by the contraction a are necessary, because the shape of a straight
muscle would bend, as opposed to contracting, when two insertions come closer to each other. This
is due to volume preservation terms in the elastic energy.

To simplify the problem, we performed model reduction over the vector a. We manually select
a few tetrahedra (usually 3-4) on the tetrahedral mesh and treat them as “handles,” meaning that
the contractions of these tetrahedra will control the entire a. Then, we generate the subspace
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basis U by calculating bounded bi-harmonic weights [Jacobson et al., 2011]. Then, the contraction
a = Uâ, where â is the subspace quantity, and our optimization problem becomes

arg min
â,x

∥LUâ∥2 + c1Eelastic(Uâ,x) + c2Eatt(x). (2)

It takes (on average) 2 minutes per muscle per pose to optimize Equation 2. Optimizing Equa-
tion 2 as opposed to Equation 1 gives us a 5× speedup and most importantly, easy optimization
convergence when the dimension of â is small.

2 Abandoned ideas for pose and spatial smoothness of volumetric
plastic strains

2.1 Augmenting the method from [Wang et al., 2021]

The first abandoned idea was to augment the method described in [Wang et al., 2021] such that it
supports pose-space smoothness across all example poses. The optimization is defined as follows,

arg min
si,xi

N

∑
i

(∣∣Lsi∣∣2 + αEMI(xi) + βEa(xi)) + γ∣∣Lps s∣∣2, (3)

st. fe(Fp(si),xi) + fa(xi) = 0, for each i = 1,2, . . . ,N (4)

where Lps is a pose-space Laplacian matrix. Directly solving this is not feasible because the number
of unknowns is enormous. Thus, we also use the block-gradient descent method, whereby in each
iteration, we randomly select pose k ∈ [1,N], and freeze unknowns related to all other poses. Then,
the problem in each iteration becomes

arg min
sk,xk

∣∣Lsk∣∣2 + αEMI(xk) + βEa(xk) + γ∣∣sk − s̄k∣∣2, (5)

subject to: fe(Fp(sk),xk) + fa(xk) = 0, (6)

where s̄k = ∑j∈N(k)wkjsj is constant during each iteration. By closely examining the objective
function, we observed that this formulation has flaws. Remember that EMI(xk) and Ea(xk) are
terms to match the sparse observations. They penalize the distances of a sparse set of surface
points to the target positions. On the other hand, the term ∣∣sk − s̄k∣∣2 is defined densely for each
tetrahedron, and causes the shape of the volumetric mesh to match s̄k. To minimize the energy, in
the region where there are no markers, the shape of the volumetric mesh follows s̄k. In the region
where there are markers, however, these terms will combat each other. This is because in general the
shape corresponding to s̄k does not meet the markers. As a result, bumps appear when α,β > γ.
Conversely, the surface simply cannot meet the markers if α,β < γ. We have implemented this
approach and verified experimentally that the method suffers from the listed negative outcomes.
To resolve this problem, we have to use a dense observation of the markers, which in turn causes a
prohibitive time complexity. Therefore, this approach is not feasible and we abandoned it.

2.2 Solving using a geometric shape modeling method

To use a dense correspondence, namely a complete target surface, we could simplify our previous
objective function and treat it as a pure geometric shape modeling problem. We define smooth-
ness as the Laplacian of the deformation gradient [Sumner and Popović, 2004, Saito et al., 2015],
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resulting in

arg min
xi

N

∑
i

(∣∣LF(xi)∣∣2 + αEMI(xi)) + γ∣∣Lps F(x))∣∣2, (7)

where F(x) is the deformation gradients of x, and EMI(xi) are now dense correspondences. Here,
F(x) = G(x−x̄), where G is the gradient operator matrix and x̄ is the rest position of the volumetric
mesh. As we can see, the deformation gradient F is a linear function of the position x. The resulting
x can then be converted to plastic strains. Because we are using isotropic hyperelastic materials,
the plastic strain is essentially the symmetric matrix of the polar decomposition of the deformation
gradient F for each tetrahedron. Although it is a quadratic energy and easy to optimize, this
method cannot handle rotations well, leading to a large amount of inverted tetrahedra.

To resolve this problem, we attempted to add a non-linear inequality constraint that guarantees
that the determinant F of each tetrahedron is positive, that is, det(F ) > ε, where ε is a very small
positive number such as 0.02. Nonetheless, this method creates extreme plastic strains whose
determinants constantly hit the ε boundary, and whose eigenvalues span a wide range, such as
from ε to 15.2. This causes extreme plastic strains when interpolating the plastic strains during
simulation. Moreover, solving such a constrained nonlinear optimization is difficult. We have
encountered failure muscles.

To address the problem of bad rotations, we also attempted to replace the Laplacian smoothing
energy with a standard elastic energy [Smith et al., 2018]. By adjusting the resolution of the
tetrahedral mesh, we were able to solve this optimization for every muscle. Nonetheless, this
method still created extreme plastic strains. This is because an elastic energy penalizes the growth
of the object, while the muscles are growing/shrinking all the time in different example poses.
Therefore, we abandoned this method as well.

3 Tendon Groups

Table 1: Tendon Groups.

finger palmar group dorsal group

thumb flexor pollicis longus extensor pollicis longus

index
flexor digitorum superficialis,
flexor digitorum profundus

extensor indicis,
extensor digitorum

middle
flexor digitorum superficialis,
flexor digitorum profundus

extensor digitorum

ring
flexor digitorum superficialis,
flexor digitorum profundus

extensor digitorum

pinky
flexor digitorum superficialis,
flexor digitorum profundus

extensor digiti minimi

In our paper (Section 5), we group tendons into tendon groups (shown here in Table 1). Groups
contain either a single tendon or two tendons, as indicated. There is a separate group for the
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palmar and dorsal side of each finger (10 groups total). On real hands, there are three tendons on
the dorsal side of the thumb finger: extensor pollicis longus, extensor pollicis brevis, and abductor
pollicis longus. The latter two are not visible in the MRI scan, and therefore we only simulate the
extensor pollicis longus. The extensor digitorum tendon spans three fingers (index, middle, ring),
and there is a tendon “bridge” (in the upper dorsal palmar area) connecting the three fingers; these
bridges are not simulated. Similarly, we do not simulate the tendon “bridge” between the extensor
digitorum and extensor digiti minimi.
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anatomy using plastic strains. ACM Trans. on Graphics (TOG), 40(2).

4


