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Abstract—Data-driven texture modeling and rendering has
pushed the limit of realism in haptics. However, the lack of
haptic texture databases, difficulties of model interpolation and
expansion, and the complexity of real textures prevent data-
driven methods from capturing a large variety of textures and
from customizing models to suit specific output hardware or user
needs. This work proposes an interactive texture generation and
search framework driven by user input. We design a GAN-based
texture model generator, which can create a wide range of texture
models using Auto-Regressive processes. Our interactive texture
search method, which we call “preference-driven”, follows an evo-
lutionary strategy given guidance from user’s preferred feedback
within a set of generated texture models. We implemented this
framework on a 3D haptic device and conducted a two-phase
user study to evaluate the efficiency and accuracy of our method
for previously unmodeled textures. The results showed that by
comparing the feel of real and generated virtual textures, users
can follow an evolutionary process to efficiently find a virtual
texture model that matched or exceeded the realism of a data-
driven model. Furthermore, for 4 out of 5 real textures, ≥80%
of the preference-driven models from participants were rated
comparable to the data-driven models.

Index Terms—Texture modeling, high-frequency vibrations,
machine learning, haptic display

I. INTRODUCTION

Generating realistic textures for virtual tool-surface inter-
actions provides touch sensations in the increasingly popular
pen-based digital design. One common approach to texture
modeling and rendering uses data recorded from a physical
interaction, the most common being vibrations produced when
dragging a tool across the surface, to create models that can
accurately reproduce the feeling of the surface [1], [2], [3], [4].
Previous work has shown that this data-driven modeling and
rendering of tool-surface interactions can capture some key di-
mensions of the haptic perception [5]. However, fully bridging
the gap from real to virtual remains a challenge. Additionally,
there are several limitations that hinder the improvement
towards large-scale texture generation and customization for
output hardware and user needs.

There are countless textures in the real world, but it is
time-consuming and laborious to manually record and model
data from a large number of textures due to current data-
driven procedures. Furthermore, the data recording can only be
done by specific devices that are not accessible to most users.
Textures for which it is challenging to record data through a
tool are either excluded from the dataset or produce inaccurate
models. For instance, during recording the tool can easily get
stuck in soft surfaces like foam and carpet, or high friction
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Fig. 1: Perception mismatch between texture recording to
rendering due to actuation methods in tool-surface interactions.

can cause a jerky and noncontinuous motion path on the
surface. Creating texture models for textured surfaces without
recording technology would greatly release the constraints in
the data collection step of the data-driven method.

The data-driven texture models from the widely-used Penn
Haptic Texture Toolkit [6] are created from acceleration sig-
nals modeled as Auto-Regressive (AR) processes. Due to the
high nonlinearity in the AR coefficient computation and the
models’ variation with both force and speed, it is not possible
to find a simple relationship between AR coefficients and
texture attributes. This intractable problem prevents us from
creating new perceptually meaningful textures through direct
interpolation or extrapolation of the existing texture models.

In data-driven methods, there exists an intrinsic gap in
the transition from texture recording to texture rendering in
terms of different actuation methods [7]. Data-driven methods
have focused on minimizing the error between recorded and
modelled signals with respect to certain components, such as
the frequency spectrum [8]. However, there is no guarantee
that simply minimizing signal errors will result in a more
realistic haptic experience considering the fundamental dif-
ferences between the way the vibrations are felt in natural
interactions through a tool and after being output through an
actuator attached to a tool (Fig. 1). This gap caused by the
different actuation methods in recording and rendering has not
been bridged and will be exaggerated by model errors.

To overcome the limits of data-driven modeling, we propose
an interactive texture generation and search system, which
is a two-stage process. The texture generation contains a
generative adversarial network (GAN) for mapping the latent
space into texture models. The texture search evolves the
texture models generated by the GAN using an evolutionary
algorithm given input about user’s preference. We use the
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generative modeling to produce a bounded space of textures
and the evolutionary algorithm to realize a controllable and
interactive texture tuning process under the guidance of user’s
preference. We create a haptic user interface to evaluate our
system’s efficiency and accuracy of generating and searching
new virtual textures that feel similar to the given real textures.

II. BACKGROUND

With the increasing demand of realistic virtual textures in
areas such as fashion design, online shopping, and surgical
training, open-source datasets that collect haptic texture signals
in tool-surface interactions have surfaced [6], [9], [10], [11].
These haptic texture databases greatly facilitate the burst
of ideas in related areas of haptic research and further the
communication between researchers from different areas.

Haptic texture modeling has shifted focus from physics-
based simulation to data-driven methods, resulting in a sig-
nificant increase in realism. Then Penn Haptic Texture Toolkit
(HaTT) [6] was created to accelerate data-driven texture
modeling and rendering research. Compared to physics-based
simulation, data-driven methods treat the mechanism for tran-
sitioning between a physical interaction to haptic feedback as
a black box, and directly map the inputs (interactive motion)
to outputs (haptic feedback) under certain assumptions and
constraints. This mapping process relies on pre-recorded haptic
signals, which are often vibration. Culbertson et al. [5] and
Shin et al. [3] used high-frequency vibration recordings to
create haptic texture models using Auto-Regressive processes
and frequency-decomposed neural networks, respectively.

The growth in popularity of personal and consumer haptic
devices creates the need for haptic feedback that can be
customized for both users and devices. However, existing
vibrotactile-based texture datasets (HaTT [6]: 100 textures,
LMT [10]: 108 textures) cannot fully satisfy this need for
customization given the range of textures in the wild and the
possibilities of output devices. Compared to vision, recording
texture information usually requires more effort and special-
ized equipment, making it challenging to expand a texture
dataset. To address this limitation, recent work has been look-
ing into generative models of textures. Generative Adversarial
Networks (GANs) have shown the potential of regenerating
and fine-tuning realistic texture samples in vision [12]. Gan et
al. [13] further combined generative adversarial training and
perceptual feature regression for visual texture generation. For
haptic textures, Ujitoko et al. [14] first proposed a method
of generating acceleration signals from texture images or
attributes via a conditional generative adversarial network
(CGAN). However, this type of end-to-end CGAN model for
generating the frequency spectrum of the acceleration signal
from texture images cannot be used for real-time rendering
of signals that match the user’s motion due to computational
constraints when transferring the frequency spectrum of ac-
celeration to temporal acceleration signals. This interactivity
between a user’s motion and rendered signals has been shown
to be critical to the realism of the virtual interaction [15].

Ujitoko et al. [16] further fine-tuned the intermediate accel-
eration signals by linearly sampling the latent vector of GAN

Fig. 2: Coulomb friction model and Auto-Regressive haptic
texture model for surfaces in HaTT. Key parameters optimized
by recorded data in the previous data-driven method and tuned
by user’s preference in this work are shown in red.

model and showed the possibility of controllably directing
the user’s perception by the interpolation of GAN. However,
this sampling was done in a monotonic direction between two
pre-defined textures, excluding possibilities of tuning in other
directions. Hassan et al. [17] introduced “Haptic Authoring”
concept to synthesize new virtual textures by interpolating
existing texture models based on the correlation with their
affective descriptions. As the appearance of personalization for
the vibrotactile patterns design [18], [19], researchers started to
shift the focus from expert decisions to personal preferences.
They used Interactive Evolutionary Computation (IEC) to
optimize the vibrotactile properties when users interacted with
the system. Compared to handcrafted universal vibrotactile
patterns based on prior knowledge, interactive generation of
vibration can effectively fit specific user and application.

In this work, we combine the interpolation of GAN and
the self-adaptation of Covariance Matrix Adaptation Evolution
Strategy (CMA-ES) to realize the free but bounded texture
search by user’s preference during the interaction with a set
of textures. CMA-ES is a comparison-based strategy, which
enables us to ask users to order textures, instead of specifying
absolute values. We use the ordering to direct the search
towards textures that are perceived close to the real texture.

III. GAN-BASED TEXTURE MODEL GENERATOR

In this section, we introduce our GAN-based texture model
generator, including details on input processing and structuring
for the HaTT dataset, and deep convolutional generative ad-
versarial networks of haptic texture models. This GAN-based
texture model generator provides the base for our interactive
texture search, which is introduced in Section IV.

A. Input Processing and Structuring

We use the Penn HaTT database created by Culbertson et
al. [6] as the base of our generative model design due to its
wide range of textures and included texture models. HaTT
collected and haptically modeled 100 textures in ten categories
ranging from metal to carpet. Each texture contains a friction
model and a haptic texture model including a set of AR models
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Fig. 3: (left) The Coulomb friction coefficient µk is computed
by fitting a line for Ff vs Fn through the origin in the data-
driven method; (right) Distribution of µk across HaTT

that cover the range of user’s force and speed during the
interaction, as shown in Fig. 2.

1) Friction Model: Friction is one of the key components
affecting a human’s perception when interacting with a tex-
ture [20]. Prior work has shown that friction has a direct impact
on a human’s judgement of slipperiness through a tool [21].

HaTT models the friction for the tooltip dragging across the
surface as Coulomb friction, where µk = Ff /Fn. The friction
coefficient is modeled by finding the slope of the line fitting the
recorded tangential Ff and normal Fn forces (Fig. 3). Fn and
Ff are extracted from the recording based on the surface plane
(α̂n) and motion direction (α̂ f ) calculated from tool position
data. The friction model adds viscous damping around zero
speed to increase stability during the rendering; the slope of
the viscous damping is set as a constant for all textures.

2) Haptic Texture Model: The tool-interaction vibrations
have been shown to be directly correlated with the texture’s
roughness [22]. For the haptic texture model, the vibration
signal recorded at 10 kHz is first segmented into multiple
stationary segments and then each segment is modeled as a
piecewise Auto-Regressive (AR) process [5]:

s[n] =
p

∑
k=1

aks[n− k]+ e[n] (1)

where p is the AR order, ak is the kth AR coefficient, and e
is the prediction error (Fig. 2).

An AR model is defined by a set of AR coefficients (a1,2,...,p)
and the variance of prediction errors (var). Implicitly, the
variance of the prediction errors encodes vibration amplitude
and the AR coefficients encode vibration frequency. For a
surface, each AR model from the segment is stored as a vertex
in a Delaunay triangulation, labeled with the median speed vi
and force fi of the segment. This triangulation is used for
the model search and interpolation during the rendering for
the surface, as shown in Fig. 4(b). All AR models in the
triangulation constitute the haptic texture model of the surface.

a) Creating a Uniform AR Order: The recording is
segmented into stationary segments before the modeling, and
this segmentation determines the AR order (i.e., the number
of AR coefficients) for each recording, resulting in inconsis-
tent AR order (17∼22) across textures due to unconstrained
interactions. To create a uniform data length that can be fed
into the GAN for training, we pad zeros on the end of the AR
coefficients up to the order of 22, as shown in Fig. 4(a). The

Fig. 4: Haptic texture model structuring: (a) Creating a uniform
AR order for models of each force-speed entry by zero
padding; (b) Creating a uniform number of AR models for
each texture by interpolation via Delaunay triangulation. For
ABS plastic, black dots are AR models in HaTT and the red
dot is one of interpolated AR models; (c) K-means clustering
for selecting a set of force-speed values for interpolation.

zeros padded in the higher order of the AR process do not
affect its performance according to the definition in Eq. (1).

b) Creating a Uniform Number of AR Models: After seg-
mentation, each segment is labeled with the median speed and
force during this period, and modeled as an AR process which
is stored in the Delaunay triangulation (black dots in Fig. 4(b)).
Due to the unconstrained nature of the recording, the number
of stored AR models varies for each texture. However, our
GAN-based model generator requires that all input texture
models are made up of the same number of AR models. So,
we interpolate the AR models to a smaller set of force-speed
values using the Delaunay triangulation [2] to create a uniform
number of AR models across textures. We select this set of
force-speed values using K-means clustering on the force-
speed entries of all texture models after removing outliers
and boundary entries; the force-speed values are chosen as the
centroid of each cluster (Fig. 4(c)). This clustering allows us to
select force-speed values that both span the motion space well
and accurately represent the amount of the user’s time spent
at that part of the motion space (i.e., the points are denser in
the regions of the motion space most frequently used). The
number of clusters is set at 18, which is the average number
of AR models over all textures in HaTT. All interpolated AR
models from a surface (red dot in Fig. 4(b)) form a haptic
texture model used for the training later.

c) Input Augmentation: In this work, we use the Penn
HaTT database, which consists of 100 textures with one model
set for each. However, this amount of data is insufficient
to train the network described in Section III-B, requiring us
to augment the texture models. Above, we apply K-means
clustering on all force-speed entries, generating 18 clusters,
and use the clusters’ centroids as force-speed values for
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interpolation. We assume that AR models behave similarly but
not exactly the same within a cluster of force-speed entries. We
randomly select an entry from each cluster to constitute a new
set of force-speed values for interpolation, labeling them with
the centroids of those clusters. It ensures the independence
between texture models due to the random selection in each
cluster. We repeat this process 20 times for each texture,
obtaining 2000 texture models in format of (number of AR
models)×(length of AR model). It is valid to label the randomly
selected entry from each cluster with its centroid due to our
assumption on the similarity of haptic feedback from similar
motions and the isotropic nature of all surfaces in HaTT.

d) Reflection Coefficients (RC): AR coefficients are noto-
riously sensitive to quantizing errors, since subtle disturbances
can lead to the system instability [23]. We use RC as an
alternative representation of AR coefficients because they can
be easily converted to and from AR coefficients without
information loss and are robust to quantizing errors [24].
They also have symmetric scales and fewer constraints on
parameters for stability - when the absolute values of RC are
less than 1, it implies a stable system. So, AR coefficients ak
with the order of 22 are converted to RC with 21 coefficients.

B. Generative Adversarial Networks of Texture Models

We propose to generate new haptic texture models from
latent vectors by training a deep convolutional generative
adversarial network (DCGAN) [25] considering its ability of
learning intermediate representations of unlabelled dataset.
We designed the network with minimal modifications on the
standard DCGAN to show the generality of the framework and
found that its simple structure was sufficient for our purposes;
other generator designs may also qualify for the role in this
preference-driven framework. The network design is shown in
Fig. 5. Our DCGAN model consists of a group of multi layer
perceptrons (MLP) as a generator G to map the latent space to
texture models, and another group of MLPs as a discriminator
D to judge whether a texture model is perceptually realistic
by training on both real and generated texture models.

The training goal for D is to maximize the probability of
correctly judging a haptic texture model from both real and
generated texture models. In the meantime, we train G to
minimize the probability that D judges the generated texture
models as fake. So, G and D follow a minmax game to improve
the perceptual realism of the generated texture models, with
the loss function L(G,D):

min
G

max
D

L(G,D) =Ex∼py(x)[logD(x)]

+Ez∼pz(z)[log(1−D(G(z)))]
(2)

where z is the latent vector, D(x) is the probability that x is a
real texture model instead of a generated one, and G(z) is the
generated texture model mapped from the latent vector z. py
is the distribution on a set of real texture models y and pz is
the prior distribution on latent vectors.

After training, we expect that the generator G can generate
perceptually realistic texture models by mapping from the la-
tent vectors z and that the outputs G(z) can cover a distribution
similar to the real texture models. Both properties are evaluated
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Fig. 5: Network architecture and parameters of DCGAN for
generating haptic texture models. The tensor shapes are speci-
fied as: AR feature 1 (model number) × AR feature 2 (variance
(VAR) + reflection coefficients (RC)) × input channels.

in Section III-D. Although the outputs of the generator have
a similar distribution as real texture models, the generator can
produce many different models that do not exist in the original
dataset, considering the large amount of outputs compared to
the limited number of textures in the dataset.

C. Network Architecture & Hyper-Parameters

The architecture of our DCGAN model with a four-layer
2D convolutional generator and a four-layer 2D convolutional
discriminator is shown in Fig. 5. The generator is deliberately
set deeper than the discriminator since we consider the recon-
struction of texture models as a harder task than the distinction
of models. The hyper-parameters in this work are tuned by
random search. We set the latent space as dimension 100. We
use spectral normalization [26] for all layers except the last in
both generator and discriminator. We also use leaky Rectified
Linear Unit with α = 0.2 as the activation function for the
middle layers of both generator and discriminator to speed up
training. Before outputting the texture model by the generator,
we apply the softplus on the variance and tanh on the reflection
coefficients separately, and then concatenate them to form the
final texture model. For the discriminator, we use the sigmoid
for the last layer to output a single scalar in [0,1], representing
the probability that a texture model is assigned as real.

The model was trained with the Adam optimizer [27] with
mean squared error (MSE) serving as the objective function.
To balance the convergence speeds, we set the learning rate
to be 0.0001 for generator and 0.0004 for discriminator. We
trained the models with a minibatch size of 64. The optimal
model was chosen at 1600 training epoch for generating haptic
texture models. We implemented the model in PyTorch and
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Fig. 6: Comparison of system responses between 100 raw
texture models from the HaTT (left) and 100 generated texture
models from the generator (right). Each line shows the average
PSD of a texture model over force-speed entries and the fading
area shows the range of PSD from all force-speed entries. The
callout plots show the step responses of two sample texture
models of all force-speed entries for better comparison.

conducted the training on a machine equipped with 64 GB
RAM, an Intel Xeon E5-2623v3 CPU, and a GeForce GTX
Titan X with 12 GB. The training lasted about 2 hours.

D. Model Evaluation

We conducted qualitative and quantitative analyses on the
GAN generator to evaluate the performance of the network.

1) Qualitative Analysis: To qualitatively measure the accu-
racy and diversity of the generated texture models, we sampled
100 new texture models and visualized the system response at
each force-speed entry of all the generated models as Power
Spectral Density (PSD). Compared to the PSD of the response
from 100 raw texture models in HaTT as shown in Fig. 6, we
can qualitatively judge that the trained generator is capable
of covering a sufficient variety of textures with high quality.
Furthermore, the generated texture models were resampled to
the haptic rate of 1 kHz and displayed on a 3D haptic device to
evaluate the authenticity of the haptic feedback by the authors.

2) Quantitative Analysis: To evaluate the stability of DC-
GAN training, we conducted a two-sample test based on kernel
Maximum Mean Discrepancy (MMD) [28], a statistical test
to decide if two sets of samples are drawn from different
distributions [29]. We define the distribution of raw data as
pdata and the distribution of generated data as pg, and the
corresponding sampling from the distributions as Xdata and Xg.
The smaller the MMD between Xdata and Xg, the closer pdata
and pg are, and the better the performance will be. Fig. 7 is
a visualization of MMD between 100 randomly sampled real
texture models Xdata from HaTT (pdata) and 100 generated
texture models Xg from generator (pg) along with the training
epoch. MMD was calculated and plotted every 50 epochs. The
kernel designed for the MMD computation is σq = 1,2,4,8,16
and λ = 1. We visualized the examples of step response and
PSD of generated texture models evolved along the MMD
curve. The plot showed the fast training convergence and the
correlation between lower MMD and better texture quality
compared to a real texture model from HaTT.

Fig. 7: MMD between ground truth texture models and gener-
ated texture models. The top row shows the step response of
the texture models of all force-speed entries. The second row
illustrates the average and range of the PSD over all force-
speed entries. Plots outlined in black show the response of the
texture models generated by the GAN generator trained until
the pointed epoch. Plots outlined in green show the response
of a ground truth texture model from HaTT.

IV. INTERACTIVE TEXTURE SEARCH BY HUMAN
PREFERENCE

Using the trained generator in the DCGAN which maps the
latent space to haptic texture models, this section introduces
our preference-driven texture modeling framework which com-
bines human preferences and an evolutionary texture search.

A. Evolutionary Texture Search

To find a desired virtual texture using the DCGAN gen-
erator, we need a method to evolve the latent vector of the
generator to the desired region in the latent space. Many
optimization methods, either gradient-based or gradient-free
algorithms, are able to search a space with the assumptions
that the underlying space is a continuous and smooth manifold
and the function to optimize is well-behaved. In this case,
however, the evaluation of the latent vector in the DCGAN is
discontinuous and rugged since it is hard to find an explicit

Algorithm 1 Interactive Texture Search by CMA-ES

Input: The mean vector µµµ ∈ Rn represents the favorite solu-
tion, the step-size σ ∈ R+ controls the step length, and
number of candidates λ .

Initialize: The covariance matrix C = I ∈ Rn×n, which con-
trols the shape of the distribution.

1: repeat
2: zzzi ∼N (µµµ,C), i = 1, ...,λ . sampling
3: zzzp

i ← project(zzzi) . project to surface of hypersphere
4: textures ← Gθ (zzz

p
i ) . generate texture candidates

5: interface.render(textures)
6: wait until interface.selectButtonPressed(idx) True
7: µµµ ← update(idx) . idx is index of selected texture
8: Adapt C and σ by rank-one update
9: until user stops
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Fig. 8: Preference-driven texture modeling framework. Users interact with a real texture and a set of virtual texture candidates,
which are generated from the latent vectors by the GAN generator, using a customized tool and a haptic device, respectively.
Based on their preference, users select the virtual texture haptically closest to the real texture. The evolutionary algorithm will
update the distribution based on the selection. The new latent vectors sampled from the updated distribution are passed back to
the generator to output new texture candidates. Meanwhile, users can adjust the surface friction to match the actual resistance.
The process continues until users think the final selected texture feels haptically close enough to the real texture.

fitness function to perceptually evaluate a texture. So, we
consider using an evolution strategy to search the latent space.

Standard evolution strategies still require an objective fitness
function to optimize for. However, our goal is to generate
virtual textures that haptically match the real texture without
collecting data from the real texture, which is not quantifiable.
Our key insight is to use Covariance Matrix Adaptation
Evolution Strategy (CMA-ES) [30], an efficient comparison-
based algorithm. We can use the ordering specified by the
user within a set of generated virtual textures, rather than the
absolute evaluation values, to evolve the latent vector in the
DCGAN. It allows users to interactively manipulate the search.
Moreover, CMA-ES has been successfully used in latent vector
evolution in the image domain [31], [32], [33] and performs
well in difficult (ill-conditioned, noisy, rugged) manifolds.

To find the target in a latent space, CMA-ES generates a
set of latent vectors by sampling a normal distribution and
orders them by the user preferences. Based on the order, CMA-
ES moves the mean and updates the covariance matrix of the
distribution from which we sample new latent vectors. This
process repeats until the generated sample reaches the goal.

Algorithm 1 shows the details of the interactive texture
search by CMA-ES. The initial step size σ is set as 0.15
and the number of candidates λ at each iteration is 3. We
set a small λ to prevent user fatigue and we use mirrored
sampling [34] to account for the small λ . From a normal
distribution with the same dimension as the latent space, we
sample λ latent vectors (line 2). To retain realism in the GAN-
generated outputs, we project the latent vectors to the surface
of a hypersphere with radius

√
n [35]. We pass the projected

latent vectors through the generator to produce texture models
(line 4) and render the textures via a haptic interface (line
5). After touching all textures with the haptic interface, users

select the texture perceptually closest to the given real texture
(line 6). We convert the user selection to an ordering of the
latent vectors, so that the selected vector is ranked highest and
the remaining two vectors are randomly ordered. Following the
CMA-ES update rules [36], we use the ordering to update the
mean of the distribution so it maximizes the probability of the
selected texture (line 7), and adapt the covariance matrix of
the distribution and the step size to increase the probability
of previous search steps (line 8). We then sample a new set
of latent vectors based on the updated distribution at the next
iteration. This procedure continues until users feel that the
selected texture is close enough to the real texture.

B. Preference-Driven Texture Modeling Framework

Our preference-driven texture modeling framework com-
bines the generator in the DCGAN trained on the HaTT
dataset and the evolutionary algorithm CMA-ES for evolving
the latent vector of the generator (Fig. 8). The major difference
between preference-driven and data-driven methods is the
basis for modeling a target texture. In data-driven methods,
the basis for creating the texture model is the recorded signals
from the interaction with the real surface. In preference-driven
methods there is no recording step, and the model is created
on the basis of a user’s subjective preference.

The integration of generative adversarial networks and
interactive evolution strategy allows the generator to bound
the search space and the evolution strategy to guide the
search by a user’s preference. The GAN-based generator is
trained over a group of real texture models, ensuring realism
and diversity of generated texture models and providing a
constrained search space for the evolutionary algorithm. The
generator starts by transforming a set of latent vectors sampled
from a normal distribution into the texture models that have a
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Fig. 9: GUI (left) and experiment setup (right) in Phase 1

decent interactivity of tool states. This interactivity allows the
user to freely interact with the generated virtual textures and
select the texture closest to the unmodeled real texture. The
selection only relies on the user’s preference from interactions
with a set of textures. Based on the selection, the evolutionary
algorithm updates the distribution where we resample the
latent vectors, to increase the likelihood of the selected texture.

During the interaction with the generated textures, consid-
ering that the Coulomb friction model is controlled by a single
scalar of the friction coefficient µk, we allow the user to tune
the coefficient by a slider based on their perceived resistance
from the real texture (Fig. 8). By user’s preference during the
interaction, the texture search and friction tuning jointly lead
to the virtual texture that feels close to the real texture.

V. SYSTEM EVALUATION

We conducted a human-subject study to determine the
effectiveness and efficiency of our preference-driven texture
modeling system. We wished to further evaluate the quality
of the generated textures compared to real textures and data-
driven virtual textures using both objective and subjective
metrics. We divided the study into two phases – texture
generation and search, and texture evaluation – with two
separate groups of participants. The study was approved by
the USC IRB under protocol UP-20-00806, and participants
were compensated with a $15 gift card for their participation.

A. User Interface and Set-up

We created a simulation platform in C++ using OpenHaptics
and OpenGL for haptic rendering, binding with Python blocks
for texture generation and search. In Phase 1, the GUI consists
of three “select” buttons and “save” buttons that correspond to
three texture patches, and a slider for controlling the friction
of all textures (Fig. 9 (left)). Users interacted with the GUI
by moving the stylus of a 3D Systems Touch device. In real-
time, the user’s force and speed were input to texture models
to generate virtual texture vibrations that were displayed to
the user through an MM3C Haptuator (TactileLabs) rigidly
attached to the tip of the stylus. The surface friction was
displayed as a force using the Touch device’s motors. In Phase
2, the GUI contains only one texture patch at a time, and
users touched the texture patch using the Touch device. In both
phases, the real texture was placed next to the Touch device.
Users touched the real texture using a tool with the same grip
as the stylus and a custom 3D-printed tip with a diameter of
3.2 mm; they were instructed to use motions similar to how
they interacted with the virtual textures (Fig. 9 (right)).

Fig. 10: Experiment procedures of Phase 1 and Phase 2. RT
is real texture, VTd is virtual texture by data-driven method,
and VTp is virtual texture by preference-driven method.

B. Experiment Procedure

The participant was seated at a table and interacted with the
simulated texture patches and other GUI components using the
Touch device. They were allowed to touch and move along
the texture patches in any way they wanted, but tapping and
pressing were not allowed. The participant interacted with the
real texture using the tool described in Section V-A given
the same motion constraints as for virtual textures. They
wore headphones playing white noise to block auditory cues.
We separated the experiment into two phases and recruited
two separate groups of participants for each phase. Five
participants (Age: M = 23.8, SD = 1.48; 4 right-handed, 1
ambidextrous) participated in Phase 1, and 14 participants
(Age: M = 24.8, SD = 3.56; all right-handed) participated in
Phase 2. Fig. 10 shows the two-phase experiment procedure.

1) Phase 1 - Texture Generation and Search: Participants
selected the virtual texture in a set of three that felt closest to a
given real texture. During the comparison, participants used a
slider to freely adjust the friction of the virtual textures. After
participants selected their preferred texture, all three texture
candidates were updated. Participants could save the texture
felt close to the real texture and then keep selecting. This
process continued until participants thought the final saved
texture felt similar enough to the real texture. The participant
completed this modeling process for the five real textures
shown in Fig. 11 in random order. For each real texture, the
final saved virtual textures were used in the next evaluation
phase, creating a total of 5 (number of textures) × 5 (number
of participants) = 25 preference-driven virtual textures.

2) Phase 2 - Texture Evaluation: In Phase 2, we provided
another set of participants with the following textures:

1) 25 preference-driven virtual textures created by the five
participants in Phase 1 (VTpi, i = 1, ...,5 where i means
ith participant)

2) 5 real textures (RT)
3) 5 data-driven virtual textures (VTd) created by the

data recorded by the first author using the method in
Section III-A

Participants first interacted with all 35 texture samples
in random order and rated the perceptual dimensions of:
roughness (smooth–rough), hardness (soft–hard), and slipperi-
ness (not-slippery–slippery). These perceptual dimensions are
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Fig. 11: Five textured surfaces, which were not in HaTT, were
used as targets for preference-driven texture modeling.

Fig. 12: Examples of texture PSD and friction coefficient µk
progression based on the participant’s selection. The solid lines
in the PSD plots represent VTp at Nth iteration and the dash
lines represent VTd. For the clarity, we only show the average
PSD over all force-speed entries.

widely used to describe a texture felt through a tool [20].
Participants were then given pairs of a real texture and a
corresponding virtual textures (either VTd or VTpi) in random
order and were asked to rate their similarity on the scale
“completely different”–“completely the same”. We conducted
this similarity comparison with 30 pairs of conditions (VTd-
RT (5 pairs) and VTpi-RT (25 pairs)) to test the hypotheses:

1) the preference-driven virtual texture VTpi feels close to
the corresponding real texture;

2) the preference driven virtual texture VTpi represents the
corresponding real texture equivalently or better than the
data-driven virtual texture.

We randomize the order of the adjective ratings and simi-
larity comparison steps to eliminate order effects.

VI. RESULTS

A. Phase 1

Our analysis of Phase 1 focuses on the robustness and
efficiency of our preference-driven texture modeling frame-
work. To show how the selected textures change toward the

TABLE I: Evaluation Metrics of Phase 1: Texture Search

Texture # of iterations # of friction tuning Time (mins)

ABS 5.2±2.77 2.2±0.84 4.44±1.28
Wood 5±4.53 3.2±1.64 4.35±2.25
Fiberglass 5.4±2.70 2.4±1.14 4.38±0.79
Canvas 4.4±1.52 2.4±1.34 5.01±2.2
Stone 3.8±1.10 1.8±1.64 3.56±0.79

Fig. 13: Comparison of Coulomb friction coefficients µk
between VTd and VTp. Five samples for VTd were computed
from five 10-second data recorded by the first author. Five
samples for VTp were tuned by five participants in Phase 1.

user’s preference, we visualized the PSD of the texture models
and the friction coefficients for a single preference-driven
modeling cycle for ABS and stone in Fig. 12. Due to the
distinct accelerometers used for the HaTT dataset (two dual-
axis ADXL321, up to 2.5 kHz for X and Y axes) and our
recording for VTd (one 3-axis ADXL326, up to 1.6 kHz for
X and Y axes and up to 550 Hz for Z axis), it is difficult to
directly compare the PSD between VTp and VTd at certain
frequencies in Fig. 12. However, we can clearly see the change
of the PSD of VTp along the iteration N. Moreover, the
different PSD shape between the final saved VTp and VTd
indicates that there may exist multiple or even better ways to
model a texture besides using the recorded data directly.

To evaluate the efficiency of the texture search, we summa-
rized some key metrics in Table I. The number of selection
iterations lies at around five for most textures, and the number
of friction tuning iterations is about two. The average time for
searching a texture is steady at about 5 minutes across all
textures and users. All the metrics have reasonable variances
across the textures, which indicates that users are able to find
textures with different characters using this system.

B. Phase 2

Our analysis of Phase 2 emphasizes the texture evaluation
and comparison of preference-driven virtual textures (VTp),
data-driven virtual textures (VTd) and real textures (RT),
both objectively and subjectively. We introduce the spectral
difference analysis [2] as a metric for objective vibration com-
parison, and use adjective ratings and similarity comparison
for subjective evaluation.

1) Friction Comparison: The friction coefficient µk in the
Coulomb friction model is tuned by users in the preference-
driven method, while it is directly computed by recorded data
in the data-driven method. Fig. 13 shows the comparison
of friction coefficients µk between these two methods. The
variance of the coefficients from the preference-driven method
is larger than that from the data-driven method (average of
std dev of µk across textures: 0.017 for VTd and 0.081 for
VTp). For the rough textures such as ABS and stone, there
is a median offset of the coefficients between these two
methods (−0.10 for ABS and 0.33 for stone). It shows the
subjectivity of capturing the surface friction property by pure
perceived resistance, and the discrepancy between real friction
measurements and virtual friction perception.
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Fig. 14: Spectral difference of VTd-RT and VTpi-RT across
textures. For each texture, dark color bars show VTd-RT and
other five bars show VTpi-RT. Error bars show standard error.

The surface friction has been shown to affect perceived
roughness and slipperiness [37], [38], and it is a key variable
for judging the realism of a virtual texture [21]. Therefore,
the friction discrepancy between the two methods leads us
to further investigate the subjective ratings of roughness,
slipperiness, and similarity later in this section.

2) Spectral Difference Analysis: The goal of our spectral
difference analysis is to quantitatively compare vibration sig-
nals from VTd, VTpi with signals from RT using a frequency-
spectra metric as in [2]. Since the vibration signals depend on
the actual force and speed of the motion, we used the same
pre-defined set of ten force-speed trajectories with a duration
of ten seconds each for all three types of textures.

The vibration data was recorded from real textures using
a 3-axis ADXL326 accelerometer and simulated by texture
models for the two types of virtual textures. We computed
the spectra using a window of 2.56 ms with 50% overlap.
The spectral difference (SD) evenly allocates weights on the
Normalized Spectral Error (NSE) and the Power Error (PE):

SD =
1

Nw
∑

j

(
NSE j

std(NSE)
+

PE j

std(PE)

)
(3)

where Nw is the number of the windows, and NSE j and PE j are
corresponding errors at jth window, which describe the errors
of spectral shape and spectral power, respectively (see [2]).

The bar plot of the spectral difference (SD) between data-
driven virtual texture and real texture (VTd-RT) and between
preference-driven virtual texture and real texture (VTpi-RT)
is shown in Fig. 14. Not surprisingly, the SD of VTpi-RT is
generally larger than that of VTd-RT, because VTd is modelled
directly using the data recorded from the real texture while
VTpi does not rely on this data. For rough textures such as
ABS, canvas, and stone modelled by VTpi, PE dominates
the SD. PE also mainly contributes to the difference of SD
between VTpi-RT and VTd-RT for those rough textures. For
relatively smooth textures such as wood and fiberglass, there
is an even distribution between NSE and PE, in both VTd-
RT and VTpi-RT conditions. Their PE is smaller than most
rough textures while their NSE remains on the same level. In
addition, their distinction of SD between VTd-RT and VTpi-
RT is much smaller than that of the rough textures.

3) Subjective Analysis: To further evaluate the textures
modeled by our method, we analyzed participants’ responses
from adjective ratings and similarity comparison.

Fig. 15: Adjective ratings for real texture (RT), data-driven
virtual texture (VTd) and preference-driven virtual texture
(VTpi). Statistical significance in the adjective ratings between
RT and virtual textures (VTd and VTpi) is marked (***
≡ p < 0.001, ** ≡ p < 0.01, * ≡ p < 0.05).

a) Adjective Ratings: We first conducted a two-way
ANOVA separately for each texture and each adjective scale
with type (RT, VTd, and VTpi, where i = 1,2, ..,5) and partic-
ipant as factors. Significance of type was found in all textures
for all adjective scales except fiberglass’s hardness (p = 0.23),
and ABS’s and canvas’s slipperiness (p = 0.56; p = 0.15).
Participant was a significant factor in all textures for all
scales except fiberglass’s roughness (p = 0.29) and stone’s
hardness and slipperiness (p = 0.07; p = 0.16). By the post-
hoc multiple comparison test, the virtual textures with ratings
significantly different from the real textures are labeled with
significance bars in Fig. 15. For the roughness scale, most sig-
nificant differences occurred in the ABS. The virtual textures,
especially the preference-driven textures, could not capture the
roughness of the real ABS. Both data-driven and preference-
driven virtual textures failed to capture the hardness of the
real texture for all but fiberglass because the hardness was
not directly rendered and participants were only allowed to
drag the stylus horizontally across the texture. For slipperiness,
significant variation from the real texture occurred mainly in
the two extreme textures – most slippery (fiberglass) and least
slippery (stone). For these two textures, there was no obvious
difference between VTd and VTpi in the rated slipperiness.

As discussed above, there were huge gaps in the friction
coefficients between VTd and VTp for ABS and stone. How-
ever, those gaps were not proportionally reflected in the ratings
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Fig. 16: Similarity ratings of VTd-RT and VTpi-RT conditions.
“◦” means that the similarity rating of VTpi-RT for a texture
is not significantly different from that of VTd-RT (p > 0.05),
and “?” means that the similarity rating of VTpi-RT is signif-
icantly higher than that of VTd-RT.

of roughness and slipperiness. The ANOVA and post-hoc test
within texture indicated that for ABS, VTd had significantly
higher roughness than VTp1 (p = 0.018), VTp3 (p = 0.010),
and VTp5 (p = 0.034); for stone, VTd had significantly lower
roughness than VTp3 (p < 0.001). Moreover, there was no
significance found between VTd and VTpi in the slipperiness
ratings for both ABS and stone. These ratings contradicted our
observed differences in the friction coefficients.

b) Similarity Comparison: Fig. 16 shows the similar-
ity ratings for different comparison conditions (VTd-RT and
VTpi-RT). We first conducted two-way ANOVA within texture
using participant and comparison condition as factors and then
conducted a post-hoc test for the textures that show signifi-
cance in terms of comparison condition. For wood, fiberglass,
canvas, and stone, at least four out of five preference-driven
virtual textures, which are marked with◦ in Fig. 16, achieved
a similarity rating that was not significantly different from
the corresponding data-driven virtual texture. The rating of
VTp2 of wood was found to be significantly higher than
that of wood’s VTd (p = 0.017) and was marked with a ?.
Yet, for ABS the VTd outperformed four VTpi based on the
comparison with the real ABS. Only VTp2 of ABS reached a
similarity rating not significantly different from the VTd.

We take a more detailed look at ABS, the texture with the
largest difference in the similarity rating between VTd-RT
and VTpi-RT. The friction coefficient comparison for ABS
does show an offset between VTd and VTp, but this offset
does not affect participants’ slipperiness rating. Instead, the
spectral difference analysis reveals the large difference in the
power error of the vibration between VTd and four VTpi for
ABS (all except VTp2), which coincides with the difference in
roughness ratings. These four VTpi=1,3,4,5 have significantly
lower rated roughness than that of RT, and their similarity
ratings are significantly lower than that of VTd. These dif-
ferences mean that for some rough textures such as ABS,
users’ perception of the vibration power may be biased by
other factors such as interactive motion, individual difference,
and lack of other feedback (e.g., audio), which consequently
causes a bias in the perceived roughness. This perception bias
during the texture search can negatively affect a preference-
driven texture’s realism during the texture evaluation.

VII. DISCUSSION

A. Secondary Result Analysis

1) Preference-Driven Friction Tuning: The results showed
that the variance of friction coefficients from the preference-
driven method was larger than that from the data-driven
method. Furthermore, there existed an offset of the coefficients
between these two methods, especially for rough textures
(ABS and stone). However, there was no significant difference
in the slipperiness ratings between VTd and VTp in Phase 2.

Previous work in haptic perception has shown that the slip-
periness/stickiness perception is moderated by deep cutaneous
receptors, the Pacinian Corpuscles, and consequently depends
on multiple factors including age, contact force, and skin
properties [38]. This variation in perception partially explains
the relatively large variance of friction tuning across users
and was also mentioned by one user in the post-experiment
survey. Bensmaı̈a and Hollins [37] further showed that the
perception of slipperiness was mediated by the subjective
intensity of vibrations. Since the rough textures delivered
stronger vibration through the tool, it was more likely that
user’s perception of slipperiness was affected when interacting
with those textures, resulting in an offset between the actual
and tuned friction coefficients. Similarly, the above factors
can be applied to the texture evaluation phase, in which the
slipperiness of rough textures was rated similarly for VTd and
VTp although their friction coefficients were very different.

From the post-experiment survey in Phase 1, one participant
indicated that the perceived friction from real textures was
related to the contact angle. The participant tried to keep this
angle constant but found it difficult to confidently judge the
friction of real textures. We also observed noticeable variances
on contact angle and normal force across participants during
the exploration. Two participants reported that the layout of
the three texture candidates in the simulation caused different
haptic perception during the search, especially the perceived
friction, due to the mechanical limit of the haptic device. They
also mentioned that in the simulation, the perceived friction
from the stylus was perceptibly different in the different
movement directions, which was another issue caused by the
device’s mechanical limit. Prior knowledge of a texture was
also specified to affect user’s perception. For instance, one par-
ticipant assumed that bumpy textures (e.g. ABS) usually had
a high friction, although this may not match their perceived
friction from the real texture. All points above can explain the
relatively large variance and evident offset of the preference-
driven friction tuning compared to the data-driven method.

2) Preference-Driven Haptic Texture Modeling: The power
error (PE) was shown to be the main contributor to the spectral
difference (SD) between the real textures and VTp for rough
surfaces (ABS, canvas, stone). This PE was also shown to be
the main source of difference between VTd and VTp for these
surfaces. In contrast, the normalized spectral error (NSE) was
fairly constant across all surfaces and model types.

Differences in roughness rating between real and virtual
textures were seen mainly in ABS. The significance in rated
roughness between VTd and VTp for ABS aligned with our
findings from the spectral difference analysis, which showed a
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correlation between PE and perceived roughness. The hardness
ratings for both VTd and VTp varied from the real texture due
to a lack of separate hardness rendering, such as the display
of tapping transients [21]. Compared to real textures, variation
in the slipperiness ratings for virtual textures was observed
mostly in the two extreme textures (fiberglass and stone).
There was no evident difference between the slipperiness
ratings of VTd and VTp for any texture even though their
friction coefficients were distinct. This lack of difference in
the perception of slipperiness shows its complexity and the
interplay of friction and vibration in its perception.

The similarity comparison showed that 72% preference-
driven textures performed comparably to the data-driven tex-
tures. However, for certain rough textures such as ABS, the
perceptual bias of vibration power during the texture search
may degrade the texture evaluation by other users. Besides
the perceptual bias on vibration power, another possibility for
the poor performance of the texture search on ABS is that
most users in Phase 1 have no previous experience operating
the haptic device and no experience with texture simulation.
So, it is difficult for them to determine how a real texture
should feel in the virtual environment since we do not offer any
virtual texture samples before the study, and such uncertainty
is amplified for rough textures. This issue may be alleviated if
the operators are experienced in haptics or if they have a high
haptic sensitivity due to their occupation, such as a surgeon.

From the post-experiment survey in Phase 1, one participant
mentioned that they felt distracted by visual feedback from the
real texture during the virtual texture search and that this visual
feedback may unintentionally affect their haptic perception.
Another participant mentioned that the visual misalignment
between real and virtual textures created difficulty in the
texture judgement since we did not map the image of the real
texture to the virtual texture. When the simulation presented
haptic feedback on a visually non-textured surface, it confused
the user and negatively affected their perception. The conflict
between the vision and haptics in the texture rendering can be
eliminated by adding the texture image to the virtual texture or
by blocking the visual feedback from the real texture. These
comments also emphasized the importance of multimodal
congruence in the virtual texture rendering.

Several participants reported difficulty in rating the hardness
and mentioned the virtual texture felt softer than the real
texture in Phase 2, which was in line with our expectation due
to our imposed limitations on their motions and the absence
of direct hardness rendering. One participant also noticed that
the white noise played through the headphones for blocking
the sounds from the interaction had an impact on their haptic
perception. This indicated the importance of sound modeling
and rendering in the virtual tool-surface interactions [39].

B. Method Comparison and Limitations

Previous work on texture generative models focuses on the
interactivity of a texture’s attributes, such as generating the
frequency spectrum of the acceleration, so that it is closer to
the generation of a “static texture” equivalent to an image in
vision [14]. Conversely, this work focuses on the interactivity

of a tool’s state and creates a generator of “texture model” that
can generate acceleration data given a user’s motions in real
time. The texture model in this work is similar to a “dynamic
texture” equivalent to a video. This shift in focus gives users
freedom to interact with the texture as they desire, rather than
constraining them to follow a certain path, speed, and force.
This freedom is significant in our system since our interactive
search method for a target texture fully relies on a user’s
preference. Giving users freedom to interact with the texture
can ensure the accuracy of the real-time haptic perception and
maximize the effectiveness of the texture search.

Since HaTT provides the raw acceleration data and a set
of Auto-Regressive (AR) texture models for each surface, it
gives us a concrete base for constructing generators directly
on texture models rather than on raw data, and allows us
the flexibility to apply modifications. Learning with structures
from AR models can also greatly reduce the dependence on
a large database, compared with end-to-end learning on raw
acceleration data [14]. Although we may not be able to surpass
the capacity of the AR model itself in this approach, many
previous works have proven the effectiveness of modeling a
variety of textures using AR processes [40], [5]. How to use
a model-free method to efficiently represent texture models
would also be an interesting future direction. For the method’s
robustness to the hardware variance such as tooltip change,
it does not affect the modeling procedure although the final
preference-driven texture will be varied accordingly since we
model how the texture feels when touched with a specific tool.

VIII. CONCLUSION

This paper created an interactive texture generation
and search system driven by human preferences, called
“preference-driven” texture modeling. Our system can quickly
model and render new textures using a GAN-based tex-
ture model generator based on the existing haptic texture
database and an interactive evolutionary algorithm combined
with human selections for texture search. In contrast to data-
driven methods, our preference-driven method does not require
additional data collection for unmodeled textures, which is a
process that is not accessible for most consumers.

We implemented this preference-driven texture modeling
method on a haptic device with an integrated GUI. We
conducted a two-phase human-subject study to evaluate the
efficiency and accuracy of the texture generation and search
for unmodeled textures. The results indicated that the texture
search can be completed within a reasonable and consistent
time range across textures and users. Most preference-driven
textures created by separate users were rated comparably to the
data-driven textures and achieved high similarity ratings com-
pared to the real textures. However, subjective vibration power
error in the search may reduce the realism of preference-driven
textures for certain rough texture such as ABS.

To simplify the interactive texture generation and search
framework, we use the self-adapted search step in the evo-
lutionary algorithm for texture search. For the more precise
control in fine-tuning of the texture, a hierarchical search
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with user-defined search step can be applied, which can be
of interest to professional designers. Additionally, with the
growth of haptic texture data created under this framework,
a collaborative interactive evolution for texture design can be
made based on textures previously designed by others. Users
can resume the texture search of others from intermediate or
final results to not only accelerate the process, but also to
satisfy their own design requirements.

This framework for texture modeling can be generalized to
other surface haptic texture rendering methods (i.e., ultrasonic
and electrovibration) and other interaction types (i.e., bare fin-
ger interaction). To use the framework on other texture display
systems, the architecture of the generator must be adapted, but
the main algorithm remains consistent. Furthermore, using the
interplay between vision and touch, it is possible for users to
infer the texture properties of an object under the guidance of
vision alone, rather than through touch. Inferring and searching
texture properties of an object without haptic data recording
can greatly enrich existing haptic texture databases and help
us remove the constraints of hardware, time, and expertise in
the data recording and modeling processes.
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